Question ID 6ee5222e

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear equations in two variables	Hard

ID: 6ee5222e

$$\frac{3}{5}x + \frac{3}{4}y = 7$$

 $rac{3}{5}x+rac{3}{4}y=7$ Which table gives three values of x and their corresponding values of y for the given equation?

A.	\boldsymbol{x}	y
,	1	113 20
	2	101 20
	4	77 20
	4	

В.	\boldsymbol{x}	y
J.	1	47
ŀ	2	5 <u>44</u>
	4	5
	4	$\frac{38}{5}$
•	4	

C.	\boldsymbol{x}	\boldsymbol{y}
	1	148 15
	2	136 15
	4	$\frac{112}{15}$
	4	

D.	\boldsymbol{x}	y
	1	128 15
	2	116 15
	4	$\frac{92}{15}$
•	1	

Question ID 252d6b8a

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear equations in two variables	Hard

ID: 252d6b8a

$$5x + 7y = 1$$
$$ax + by = 1$$

In the given pair of equations, a and b are constants. The graph of this pair of equations in the xy-plane is a pair of perpendicular lines. Which of the following pairs of equations also represents a pair of perpendicular lines?

A.
$$10x + 7y = 1$$
 $ax - 2by = 1$

B.
$$10x + 7y = 1$$

 $ax + 2by = 1$

C.
$$10x + 7y = 1$$

 $2ax + by = 1$

D.
$$5x-7y=1$$
 $ax+by=1$

Question ID 900234f1

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear equations in two variables	Hard

ID: 900234f1

$$5G + 45R = 380$$

At a school fair, students can win colored tokens that are worth a different number of points depending on the color. One student won G green tokens and R red tokens worth a total of 380 points. The given equation represents this situation. How many more points is a red token worth than a green token?

Question ID e40b7bdc

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear equations in two variables	Hard

ID: e40b7bdc

Keenan made 32 cups of vegetable broth. Keenan then filled x small jars and y large jars with all the vegetable broth he made. The equation 3x + 5y = 32 represents this situation. Which is the best interpretation of 5y in this context?

- A. The number of large jars Keenan filled
- B. The number of small jars Keenan filled
- C. The total number of cups of vegetable broth in the large jars
- D. The total number of cups of vegetable broth in the small jars

Question ID dcdceeae

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear equations in two variables	Hard

ID: dcdceeae

In the *xy*-plane, line p has a slope of $-\frac{5}{3}$ and an *x*-intercept of (-6,0). What is the *y*-coordinate of the *y*-intercept of line p?

Question ID 1cc52a1f

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear equations in two variables	Hard

ID: 1cc52a1f

A certain apprentice has enrolled in 85 hours of training courses. The equation 10x + 15y = 85 represents this situation, where x is the number of on-site training courses and y is the number of online training courses this apprentice has enrolled in. How many more hours does each online training course take than each on-site training course?

Question ID beb54560

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear equations in two variables	Hard

ID: beb54560

Line p is defined by 4y+8x=6. Line r is perpendicular to line p in the xy-plane. What is the slope of line r?

Question ID a8e43ae3

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear equations in two variables	Hard

ID: a8e43ae3

The graph of y=f(x)+14 is shown. Which equation defines function f?

A.
$$f(x)=-rac{1}{4}x-12$$

B.
$$f(x)=-rac{1}{4}x+16$$

C.
$$f(x)=-rac{1}{4}x+2$$

D.
$$f(x)=-rac{1}{4}x-14$$

Question ID c73c84cc

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear equations in two variables	Hard

ID: c73c84cc

The graph of 9x - 10y = 19 is translated down 4 units in the *xy*-plane. What is the *x*-coordinate of the *x*-intercept of the resulting graph?

Question ID 35978b89

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear equations in two variables	Hard

ID: 35978b89

The point with coordinates (d,4) lies on the line shown. What is the value of d?

- A. $\frac{7}{2}$
- B. $\frac{26}{7}$
- C. $\frac{24}{7}$
- D. $\frac{27}{8}$

Question ID 9a67367f

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear equations in two variables	Hard

ID: 9a67367f

\boldsymbol{x}	\boldsymbol{y}
k	13
k+7	-15
4	
4	
I	

The table gives the coordinates of two points on a line in the *xy*-plane. The *y*-intercept of the line is (k-5,b), where k and b are constants. What is the value of b?

Question ID 95cc0b50

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear equations in two variables	Hard

ID: 95cc0b50

The graph of 7x+2y=-31 in the xy-plane has an x-intercept at (a,0) and a y-intercept at (0,b), where a and b are constants. What is the value of $\frac{b}{a}$?

- A. $-\frac{7}{2}$
- $B.-\tfrac{2}{7}$
- C. $\frac{2}{7}$
- D. $\frac{7}{2}$

Question ID e4db4454

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear equations in two variables	Hard

ID: e4db4454

Line h is defined by $\frac{1}{5}x + \frac{1}{7}y - 70 = 0$. Line j is perpendicular to line h in the xy-plane. What is the slope of line j?

- $\mathsf{A.}-\tfrac{7}{5}$
- $\mathsf{B.}-\tfrac{5}{7}$
- C. $\frac{7}{5}$
- D. $\frac{5}{7}$

Question ID 0e1dbc1d

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear equations in two variables	Hard

ID: 0e1dbc1d

Line ℓ is defined by 3y+12x=5. Line n is perpendicular to line ℓ in the xy-plane. What is the slope of line n?

Question ID 1ad71c23

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear equations in two variables	Hard

ID: 1ad71c23

$oldsymbol{x}$	\boldsymbol{y}
-18	-48
7	52
_	

The table shows two values of x and their corresponding values of y. In the xy-plane, the graph of the linear equation representing this relationship passes through the point $\left(\frac{1}{7}, a\right)$. What is the value of a?

- A. $-\frac{4}{11}$
- B. $-\frac{4}{77}$
- C. $\frac{4}{7}$
- D. $\frac{172}{7}$

Question ID 8d7fb037

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear equations in two variables	Hard

ID: 8d7fb037

\boldsymbol{x}	\boldsymbol{y}
18	130
23	160
26	178
4	
4	
4	

For line h, the table shows three values of x and their corresponding values of y. Line k is the result of translating line h down t units in the xy-plane. What is the x-intercept of line t?

A.
$$(-\frac{26}{3},0)$$

B.
$$(-\frac{9}{2},0)$$

C.
$$(-\frac{11}{3},0)$$

D.
$$(-\frac{17}{6},0)$$

Question ID 3dcde9ed

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear equations in two variables	Hard

ID: 3dcde9ed

Line ${\pmb k}$ is shown in the ${\it xy}$ -plane. Line ${\pmb j}$ (not shown) is perpendicular to line ${\pmb k}$. What is the slope of line ${\pmb j}$?

Question ID 8a1fb433

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear equations in two variables	Hard

ID: 8a1fb433

The graph shows a linear relationship between x and y. Which equation represents this relationship, where R is a positive constant?

A.
$$Rx+18y=36$$

B.
$$Rx-18y=-36$$

C.
$$18x + Ry = 36$$

D.
$$18x-Ry=-36$$

Question ID ec0fe2b2

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear equations in two variables	Hard

ID: ec0fe2b2

In the *xy*-plane, line ℓ passes through the point (0,0) and is parallel to the line represented by the equation y=8x+2. If line ℓ also passes through the point (3,d), what is the value of d?

Question ID 228bd68a

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear equations in two variables	Hard

ID: 228bd68a

What is the *y*-coordinate of the *y*-intercept of the graph of $\frac{3x}{7} = -\frac{5y}{9} + 21$ in the *xy*-plane?

Question ID a83cf688

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear equations in two variables	Hard

ID: a83cf688

\boldsymbol{x}	\boldsymbol{y}
-2s	24
-s	21
S	15

The table shows three values of x and their corresponding values of y, where s is a constant. There is a linear relationship between x and y. Which of the following equations represents this relationship?

A.
$$sx + 3y = 18s$$

B.
$$3x + sy = 18s$$

C.
$$3x + sy = 18$$

D.
$$sx + 3y = 18$$