Question ID 7f4b32e1

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Advanced Math	Equivalent expressions	Medium

ID: 7f4b32e1

$$g(x) = \frac{3}{5}x + \frac{7}{6}$$
$$h(x) = 6x - 5$$

The functions g and h are defined by the equations shown. Which expression is equivalent to $g(x) \cdot h(x)$?

A.
$$\frac{18x^2}{5} - \frac{35}{6}$$

B.
$$\frac{18x^2}{5} + \frac{27x}{11} - \frac{35}{6}$$

C.
$$\frac{18x^2}{5} - 4x - \frac{35}{6}$$

D.
$$\frac{18x^2}{5} + 4x - \frac{35}{6}$$

ID: 7f4b32e1 Answer

Correct Answer: D

Rationale

Choice D is correct. It's given that $g(x)=\frac{3}{5}x+\frac{7}{6}$ and h(x)=6x-5. Substituting $\frac{3}{5}x+\frac{7}{6}$ for g(x) and 6x-5 for h(x) in the expression $g(x)\cdot h(x)$ yields $\left(\frac{3}{5}x+\frac{7}{6}\right)(6x-5)$. This expression can be rewritten as $\frac{3}{5}x(6x-5)+\frac{7}{6}(6x-5)$, or $\frac{18x^2}{5}-3x+7x-\frac{35}{6}$, which is equivalent to $\frac{18x^2}{5}+4x-\frac{35}{6}$.

Choice A is incorrect. This expression is equivalent to $\frac{3}{5}x(6x)+\frac{7}{6}(-5)$, not $(\frac{3}{5}x+\frac{7}{6})(6x-5)$.

Choice B is incorrect and may result from conceptual or calculation errors.

Choice C is incorrect. This expression is equivalent to $(\frac{3}{5}x-\frac{7}{6})(6x+5)$, not $(\frac{3}{5}x+\frac{7}{6})(6x-5)$.

Question ID bc68d9f9

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Advanced Math	Equivalent expressions	Medium

ID: bc68d9f9

Which expression is equivalent to $6x^8y^2 + 12x^2y^2$?

- A. $6x^2y^2(2x^6)$
- B. $6x^2y^2(x^4)$
- C. $6x^2y^2(x^6+2)$
- D. $6x^2y^2(x^4+2)$

ID: bc68d9f9 Answer

Correct Answer: C

Rationale

Choice C is correct. Since each term of the given expression has a common factor of $6x^2y^2$, it may be rewritten as $6x^2y^2(x^6)+6x^2y^2(2)$, or $6x^2y^2(x^6+2)$.

Choice A is incorrect. This expression is equivalent to $12x^8y^2$, not $6x^8y^2+12x^2y^2$.

Choice B is incorrect. This expression is equivalent to $6x^6y^2$, not $6x^8y^2 + 12x^2y^2$.

Choice D is incorrect. This expression is equivalent to $6x^6y^2+12x^2y^2$, not $6x^8y^2+12x^2y^2$.

Question ID eb385faa

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Advanced Math	Equivalent expressions	Medium

ID: eb385faa

Which expression is equivalent to $(7x^3 + 7x) - (6x^3 - 3x)$?

A.
$$x^3+10x$$

$$\mathsf{B.} - 13x^3 + 10x$$

C.
$$-13x^3 + 4x$$

D.
$$x^3+4x$$

ID: eb385faa Answer

Correct Answer: A

Rationale

Choice A is correct. Applying the distributive property, the given expression can be written as $7x^3 + 7x - 6x^3 + 3x$. Grouping like terms in this expression yields $(7x^3 - 6x^3) + (7x + 3x)$. Combining like terms in this expression yields $x^3 + 10x$.

Choice B is incorrect and may result from conceptual or calculation errors.

Choice C is incorrect and may result from conceptual or calculation errors.

Choice D is incorrect and may result from conceptual or calculation errors.

Question ID 219a57aa

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Advanced Math	Equivalent expressions	Medium

ID: 219a57aa

Which expression represents the product of $\left(x^{-6}y^3z^5\right)$ and $\left(x^4z^5+y^8z^{-7}\right)$?

A.
$$x^{-2}z^{10} + y^{11}z^{-2}$$

B.
$$x^{-2}z^{10} + x^{-6}z^{-2}$$

C.
$$x^{-2}y^3z^{10}+y^8z^{-7}$$

D.
$$x^{-2}y^3z^{10} + x^{-6}y^{11}z^{-2}$$

ID: 219a57aa Answer

Correct Answer: D

Rationale

Choice D is correct. The product of $(x^{-6}y^3z^5)$ and $(x^4z^5+y^8z^{-7})$ can be represented by the expression $(x^{-6}y^3z^5)(x^4z^5+y^8z^{-7})$. Applying the distributive property to this expression yields $(x^{-6}y^3z^5)(x^4z^5)+(x^{-6}y^3z^5)(y^8z^{-7})$, or $x^{-6}x^4y^3z^5z^5+x^{-6}y^3y^8z^5z^{-7}$. This expression is equivalent to $x^{-6+4}y^3z^{5+5}+x^{-6}y^{3+8}z^{5-7}$, or $x^{-2}y^3z^{10}+x^{-6}y^{11}z^{-2}$.

Choice A is incorrect and may result from conceptual or calculation errors.

Choice B is incorrect and may result from conceptual or calculation errors.

Choice C is incorrect and may result from conceptual or calculation errors.

Question ID 5e61ba73

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Advanced Math	Equivalent expressions	Medium

ID: 5e61ba73

The expression $90y^5 - 54y^4$ is equivalent to $ry^4(15y - 9)$, where r is a constant. What is the value of r?

ID: 5e61ba73 Answer

Correct Answer: 6

Rationale

The correct answer is 6. Applying the distributive property to the expression $ry^4(15y-9)$ yields $15ry^5-9ry^4$. Since $90y^5-54y^4$ is equivalent to $ry^4(15y-9)$, it follows that $90y^5-54y^4$ is also equivalent to $15ry^5-9ry^4$. Since these expressions are equivalent, it follows that corresponding coefficients are equivalent. Therefore, 90=15r and -54=-9r. Solving either of these equations for r will yield the value of r. Dividing both sides of 90=15r by 15 yields 6=r. Therefore, the value of r is 6.

Question ID 01264050

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Advanced Math	Equivalent expressions	Medium

ID: 01264050

Which expression is equivalent to $(d-6)(8d^2-3)$?

A.
$$8d^3 - 14d^2 - 3d + 18$$

B.
$$8d^3 - 17d^2 + 48$$

C.
$$8d^3 - 48d^2 - 3d + 18$$

D.
$$8d^3 - 51d^2 + 48$$

ID: 01264050 Answer

Correct Answer: C

Rationale

Choice C is correct. Applying the distributive property to the given expression yields $d(8d^2-3)-6(8d^2-3)$. Applying the distributive property once again to this expression yields

$$(d) \left(8d^2\right) + (d)(-3) + (-6) \left(8d^2\right) + (-6)(-3)$$
, or $8d^3 + (-3d) + \left(-48d^2\right) + 18$. This expression can be rewritten as $8d^3 - 48d^2 - 3d + 18$. Thus, $(d-6) \left(8d^2 - 3\right)$ is equivalent to $8d^3 - 48d^2 - 3d + 18$.

Choice A is incorrect and may result from conceptual or calculation errors.

Choice B is incorrect and may result from conceptual or calculation errors.

Choice D is incorrect and may result from conceptual or calculation errors.

Question ID 581be4a1

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Advanced Math	Equivalent expressions	Medium

ID: 581be4a1

Which of the following expressions is equivalent to $8x^{10} - 8x^9 + 88x$?

A.
$$x(7x^{10}-7x^9+87x)$$

B.
$$x(8^{10} - 8^9 + 88)$$

C.
$$8x(x^{10}-x^9+11x)$$

D.
$$8x(x^9-x^8+11)$$

ID: 581be4a1 Answer

Correct Answer: D

Rationale

Choice D is correct. Since 8x is a common factor of each term in the given expression, the expression can be rewritten as $8x(x^9-x^8+11)$.

Choice A is incorrect. This expression is equivalent to $7x^{11} - 7x^{10} + 87x^2$.

Choice B is incorrect. This expression is equivalent to $8^{10}x - 8^9x + 88x$.

Choice C is incorrect. This expression is equivalent to $8x^{11} - 8x^{10} + 88x^2$.

Question ID 3a7aa34d

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Advanced Math	Equivalent expressions	Medium

ID: 3a7aa34d

Which expression is equivalent to $a^{\frac{11}{12}}$, where a>0?

- A. $\sqrt[12]{a^{132}}$
- B. $\sqrt[144]{a^{132}}$
- C. $\sqrt[121]{a^{132}}$
- D. $\sqrt[11]{a^{132}}$

ID: 3a7aa34d Answer

Correct Answer: B

Rationale

Choice B is correct. Since $\frac{12}{12}=1$, multiplying the exponent of the given expression by $\frac{12}{12}$ yields an equivalent expression: $a^{\left(\frac{11}{12}\right)\left(\frac{12}{12}\right)}=a^{\left(\frac{332}{144}\right)}$. Since $\frac{132}{144}=132\left(\frac{1}{144}\right)$, the expression $a^{\frac{132}{144}}$ can be rewritten as $a^{\left(132\right)\left(\frac{1}{144}\right)}$. Applying properties of exponents, this expression can be rewritten as $a^{\left(132\right)\left(\frac{1}{144}\right)}$. An expression of the form $a^{\left(132\right)\left(\frac{1}{144}\right)}$ and $a^{\left(132\right)\left(\frac{1}{144}\right)}$. Therefore, $a^{\left(132\right)\left(\frac{1}{144}\right)}$ is equivalent to $a^{\left(132\right)\left(\frac{1}{144}\right)}$.

Choice A is incorrect and may result from conceptual or calculation errors.

Choice C is incorrect and may result from conceptual or calculation errors.

Choice D is incorrect and may result from conceptual or calculation errors.

Question ID a351b98d

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Advanced Math	Equivalent expressions	Medium

ID: a351b98d

The expression $\frac{24}{6x+42}$ is equivalent to $\frac{4}{x+b}$, where b is a constant and x>0. What is the value of b?

- A. **7**
- B. **10**
- C. 24
- D. 252

ID: a351b98d Answer

Correct Answer: A

Rationale

Choice A is correct. Since the given expressions are equivalent and the numerator of the second expression is $\frac{1}{6}$ of the numerator of the first expression, the denominator of the second expression must also be $\frac{1}{6}$ of the denominator of the first expression. By the distributive property, $\frac{1}{6}(6x+42)$ is equivalent to $\frac{1}{6}(6x)+\frac{1}{6}(42)$, or x+7. Therefore, the value of b is 7.

Choice B is incorrect and may result from conceptual or calculation errors.

Choice C is incorrect and may result from conceptual or calculation errors.

Choice D is incorrect and may result from conceptual or calculation errors.

Question ID 5883daba

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Advanced Math	Equivalent expressions	Medium

ID: 5883daba

Which expression is equivalent to $\left(8x^3+8\right)-\left(x^3-2\right)$?

- A. $8x^3+6$
- B. $7x^3 + 10$
- C. $8x^3 + 10$
- D. $7x^3 + 6$

ID: 5883daba Answer

Correct Answer: B

Rationale

Choice B is correct. The given expression is equivalent to $8x^3 + 8 - x^3 - (-2)$, or $8x^3 + 8 - x^3 + 2$. Combining like terms in this expression yields $7x^3 + 10$.

Choice A is incorrect. This expression is equivalent to $\left(8x^3+8\right)-2$, not $\left(8x^3+8\right)-\left(x^3-2\right)$.

Choice C is incorrect. This expression is equivalent to $\left(8x^3+8\right)-\left(-2\right)$, not $\left(8x^3+8\right)-\left(x^3-2\right)$.

Choice D is incorrect. This expression is equivalent to $\left(8x^3+8\right)-\left(x^3+2\right)$, not $\left(8x^3+8\right)-\left(x^3-2\right)$.

Question ID 27b93ec4

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Advanced Math	Equivalent expressions	Medium

ID: 27b93ec4

Which expression is equivalent to $(x^2+11)^2+(x-5)(x+5)$?

A.
$$x^4 + 23x^2 - 14$$

B.
$$x^4 + 23x^2 + 96$$

C.
$$x^4 + 12x^2 + 121$$

D.
$$x^4 + x^2 + 146$$

ID: 27b93ec4 Answer

Correct Answer: B

Rationale

Choice B is correct. The expression $\left(x^2+11\right)^2$ can be written as $\left(x^2+11\right)\left(x^2+11\right)$, which is equivalent to $x^2\left(x^2+11\right)+11\left(x^2+11\right)$. Distributing x^2 and 11 to $\left(x^2+11\right)$ yields $x^4+11x^2+11x^2+121$, or x^4+22x^2+121 . The expression (x-5)(x+5) is equivalent to (x-5)x+(x-5)5. Distributing x and x to x^4+2x^2+121 yields $x^2-5x+5x-25$, or x^2-25 . Therefore, the expression $\left(x^2+11\right)^2+\left(x-5\right)(x+5)$ is equivalent to $\left(x^4+22x^2+121\right)+\left(x^2-25\right)$, or $x^4+22x^2+121+x^2-25$. Combining like terms in this expression yields x^4+23x^2+96 .

Choice A is incorrect. Equivalent expressions must be equivalent for any value of x. Substituting 0 for x in this expression yields -14, whereas substituting 0 for x in the given expression yields 96.

Choice C is incorrect. Equivalent expressions must be equivalent for any value of x. Substituting 0 for x in this expression yields 121, whereas substituting 0 for x in the given expression yields 96.

Choice D is incorrect. Equivalent expressions must be equivalent for any value of x. Substituting 0 for x in this expression yields 146, whereas substituting 0 for x in the given expression yields 96.

Question ID ce53810c

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Advanced Math	Equivalent expressions	Medium

ID: ce53810c

Which expression is equivalent to $rac{h^{15}q^7}{h^5q^{21}}$, where h>0 and q>0?

- A. $\frac{h^{10}}{q^{14}}$
- B. $\frac{h^3}{q^3}$
- C. $h^{10}q^{14}$
- D. h^3q^3

ID: ce53810c Answer

Correct Answer: A

Rationale

Choice A is correct. For positive values of a, $\frac{a^m}{a^n}=a^{(m-n)}$, where m and n are integers. Since it's given that h>0 and q>0, this property can be applied to rewrite the given expression as $\left(h^{(15-5)}\right)\left(q^{(7-21)}\right)$, which is equivalent to $h^{10}q^{-14}$. For positive values of a, $a^{-n}=\frac{1}{a^n}$. This property can be applied to rewrite the expression $h^{10}q^{-14}$ as $\left(h^{10}\right)\left(\frac{1}{q^{14}}\right)$, which is equivalent to $\frac{h^{10}}{q^{14}}$.

Choice B is incorrect and may result from conceptual or calculation errors.

Choice C is incorrect and may result from conceptual or calculation errors.

Choice D is incorrect and may result from conceptual or calculation errors.

Question ID f8a698f7

Assessment	Test	Domain	Skill	Difficulty	
SAT	Math	Advanced Math	Equivalent expressions	Medium	

ID: f8a698f7

$$(5x^3-3)-(-4x^3+8)$$

 $\left(5x^3-3
ight)-\left(-4x^3+8
ight)$ The given expression is equivalent to bx^3-11 , where b is a constant. What is the value of b?

ID: f8a698f7 Answer

Correct Answer: 9

Rationale

The correct answer is 9. The given expression can be rewritten as $(5x^3-3)+(-1)(-4x^3+8)$. By applying the distributive property, this expression can be rewritten as $5x^3-3+4x^3+(-8)$, which is equivalent to $\left(5x^3+4x^3\right)+\left(-3+\left(-8\right)\right)$. Adding like terms in this expression yields $9x^3-11$. Since it's given that $(5x^3-3)-(-4x^3+8)$ is equivalent to bx^3-11 , it follows that $9x^3-11$ is equivalent to bx^3-11 . Therefore, the coefficients of x^3 in these two expressions must be equivalent, and the value of b must be 9.

Question ID 91f6f890

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Advanced Math	Equivalent expressions	Medium

ID: 91f6f890

Which expression is equivalent to $\sqrt[\eta]{x^9y^9}$, where x and y are positive?

- A. msup
- B. msup
- C. msup
- D. msup

ID: 91f6f890 Answer

Correct Answer: B

Rationale

Choice B is correct. For positive values of a and b, $a^mb^m=(ab)^m$, $\sqrt[n]{a}=(a)^{\frac{1}{n}}$, and $a^{j}=a^{jk}$. Therefore, the given expression, $\sqrt[n]{x^9y^9}$, can be rewritten as $\sqrt[n]{(xy)^9}$. This expression is equivalent to $a^{j}=a^{jk}$. Which can be rewritten as $a^{j}=a^{jk}$. Therefore, the given expression, $a^{j}=a^{jk}$.

Choice A is incorrect and may result from conceptual or calculation errors.

Choice C is incorrect and may result from conceptual or calculation errors.

Choice D is incorrect and may result from conceptual or calculation errors.

Question ID aeef182c

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Advanced Math	Equivalent expressions	Medium

ID: aeef182c

$$f(x)=x^2+bx \ g(x)=9x^2-27x$$

Functions f and g are given, and in function f, b is a constant. If $f(x) \cdot g(x) = 9x^4 - 26x^3 - 3x^2$, what is the value of **b**?

- A. -26
- B. $-\frac{26}{9}$
- C. $\frac{1}{9}$
- D. 9

ID: aeef182c Answer

Correct Answer: C

Rationale

Choice C is correct. Multiplying the given functions f and g yields $f(x) \cdot g(x) = (x^2 + bx)(9x^2 - 27x)$. Applying the distributive property to the right-hand side of this equation yields

 $f(x)\cdot g(x)=ig(x^2ig)ig(9x^2-27xig)+ig(bxig)ig(9x^2-27xig)$. Applying the distributive property once again to the right-hand side of this equation yields $f(x)\cdot g(x)=\left(x^2\right)\left(9x^2\right)-\left(x^2\right)(27x)+(bx)\left(9x^2\right)-(bx)(27x)$, which is equivalent to $f(x)\cdot g(x)=9x^4-27x^3+9bx^3-27bx^2$. Factoring out x^3 from the second and third terms yields

 $f(x)\cdot g(x)=9x^4+(-27+9b)x^3-27bx^2$. Since the left-hand sides of

 $f(x)\cdot g(x)=9x^4+(-27+9b)x^3-27bx^2$ and $f(x)\cdot g(x)=9x^4-26x^3-3x^2$ are equal, it follows that $(-27+9b)x^3=-26x^3$, or -27+9b=-26, and $-27bx^2=-3x^2$, or -27b=-3. Adding 27 to each side of -27+9b=-26 yields 9b=1. Dividing each side of this equation by 9 yields $b=\frac{1}{9}$. Similarly, dividing each side of -27b=-3 by -27 yields $b=rac{1}{9}.$ Therefore, the value of b is $rac{1}{9}.$

Choice A is incorrect and may result from conceptual or calculation errors.

Choice B is incorrect and may result from conceptual or calculation errors.

Choice D is incorrect and may result from conceptual or calculation errors.

Question ID a65952d9

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Advanced Math	Equivalent expressions	Medium

ID: a65952d9

Which expression is equivalent to $\frac{8x(x-7)-3(x-7)}{2x-14}$, where x>7?

- A. $\frac{x-7}{5}$
- B. $\frac{8x-3}{2}$
- C. $\frac{8x^2-3x-14}{2x-14}$
- D. $\frac{8x^2-3x-77}{2x-14}$

ID: a65952d9 Answer

Correct Answer: B

Rationale

Choice B is correct. The given expression has a common factor of 2 in the denominator, so the expression can be rewritten as $\frac{8x(x-7)-3(x-7)}{2(x-7)}$. The three terms in this expression have a common factor of (x-7). Since it's given that x>7, x can't be equal to x, which means x0. Therefore, each term in the expression, $\frac{8x(x-7)-3(x-7)}{2(x-7)}$, can be divided by x1, which gives $\frac{8x-3}{2}$.

Choice A is incorrect and may result from conceptual or calculation errors.

Choice C is incorrect and may result from conceptual or calculation errors.

Choice D is incorrect and may result from conceptual or calculation errors.