Question ID 7eea65e3 | Assessment | Test | Domain | Skill | Difficulty | |------------|------|---------|--------------------------------------------------|------------| | SAT | Math | Algebra | Systems of two linear equations in two variables | Medium | #### ID: 7eea65e3 Which of the following systems of linear equations has no solution? $$A. y = 6x + 3$$ $$y = 6x + 9$$ B. $$y = 10$$ $y = 10x + 10$ C. $$y = 14x + 14$$ $y = 10x + 14$ D. $$x=3$$ $y=10$ ### ID: 7eea65e3 Answer Correct Answer: A Rationale Choice A is correct. A system of two linear equations in two variables, x and y, has no solution if the graphs of the lines represented by the equations in the xy-plane are distinct and parallel. The graphs of two lines in the xy-plane represented by equations in slope-intercept form, y=mx+b, where m and b are constants, are parallel if their slopes, m, are the same and are distinct if their y-coordinates of the y-intercepts, b, are different. In the equations y=6x+3 and y=6x+9, the values of m are each m0, and the values of m2 and m3, respectively. Since the slopes of these lines are the same and the y-coordinates of the y-intercepts are different, it follows that the system of linear equations in choice A has no solution. Choice B is incorrect. The two lines represented by these equations are a horizontal line and a line with a slope of 10 that have the same y-coordinate of the y-intercept. Therefore, this system has a solution, (0, 10), rather than no solution. Choice C is incorrect. The two lines represented by these equations have different slopes and the same y-coordinate of the y-intercept. Therefore, this system has a solution, (0, 14), rather than no solution. Choice D is incorrect. The two lines represented by these equations are a vertical line and a horizontal line. Therefore, this system has a solution, (3, 10), rather than no solution. # **Question ID cdcfc854** | Assessment | Test | Domain | Skill | Difficulty | |------------|------|---------|--------------------------------------------------|------------| | SAT | Math | Algebra | Systems of two linear equations in two variables | Medium | ### ID: cdcfc854 $$y - 9x = 13$$ $$5x = 2y$$ What is the solution (x, y) to the given system of equations? - A. $(\frac{5}{2}, 1)$ - B. $(1, \frac{2}{5})$ - C. (-2, -5) - D. (-5, -2) #### ID: cdcfc854 Answer Correct Answer: C Rationale Choice C is correct. Adding 9x to both sides of the first equation in the given system yields y=9x+13. Substituting the expression 9x+13 for y in the second equation in the given system yields 5x=2(9x+13). Distributing the 2 on the right-hand side of this equation yields 5x=18x+26. Subtracting 18x from both sides of this equation yields -13x=26. Dividing both sides of this equation by -13 yields x=-2. Substituting -2 for x in the equation y=9x+13 yields y=9(-2)+13, or y=-5. Therefore, the solution (x,y) to the given system of equations is (-2,-5). Choice A is incorrect and may result from conceptual or calculation errors. Choice B is incorrect and may result from conceptual or calculation errors. Choice D is incorrect. This is the solution (y, x), not (x, y), to the given system of equations. # **Question ID e13b9cac** | Assessment | Test | Domain | Skill | Difficulty | | |------------|------|---------|--------------------------------------------------|------------|--| | SAT | Math | Algebra | Systems of two linear equations in two variables | Medium | | ### ID: e13b9cac $$6x + 7y = 28$$ $$2x + 2y = 10$$ The solution to the given system of equations is (x, y). What is the value of y? - A. -2 - B. **7** - C. 14 - D. 18 #### ID: e13b9cac Answer Correct Answer: A Rationale Choice A is correct. The given system of linear equations can be solved by the elimination method. Multiplying each side of the second equation in the given system by 3 yields (2x+2y)(3)=(10)(3), or 6x+6y=30. Subtracting this equation from the first equation in the given system yields (6x+7y)-(6x+6y)=(28)-(30), which is equivalent to (6x-6x)+(7y-6y)=28-30, or y=-2. Choice B is incorrect. This is the value of \boldsymbol{x} , not the value of \boldsymbol{y} . Choice C is incorrect and may result from conceptual or calculation errors. Choice D is incorrect and may result from conceptual or calculation errors. # **Question ID c751fef8** | Assessment | Test | Domain | Skill | Difficulty | |------------|------|---------|--------------------------------------------------|------------| | SAT | Math | Algebra | Systems of two linear equations in two variables | Medium | ### ID: c751fef8 $$y = -\frac{1}{5}x$$ $$y = \frac{1}{7}x$$ The solution to the given system of equations is (x, y). What is the value of x? - A. -5 - B. **0** - C. 2 - D. **7** #### ID: c751fef8 Answer Correct Answer: B Rationale Choice B is correct. It's given by the first equation in the system that $y=-\frac{1}{5}x$. Substituting $-\frac{1}{5}x$ for y in the second equation in the system, $y=\frac{1}{7}x$, yields $-\frac{1}{5}x=\frac{1}{7}x$. Adding $-\frac{1}{5}x$ to both sides of this equation yields $0=\frac{1}{7}x+\frac{1}{5}x$, which is equivalent to $0=\frac{5}{35}x+\frac{7}{35}x$, or $0=\frac{12}{35}x$. Multiplying both sides of this equation by $\frac{35}{12}$ yields 0=x. Therefore, the value of x is 0. Choice A is incorrect and may result from conceptual or calculation errors. Choice C is incorrect and may result from conceptual or calculation errors. Choice D is incorrect and may result from conceptual or calculation errors. # Question ID 66b488d2 | Assessment | Test | Domain | Skill | Difficulty | |------------|------|---------|--------------------------------------------------|------------| | SAT | Math | Algebra | Systems of two linear equations in two variables | Medium | ### ID: 66b488d2 $$y = 2x + 10$$ $$y = 2x - 1$$ At how many points do the graphs of the given equations intersect in the xy-plane? - A. Zero - B. Exactly one - C. Exactly two - D. Infinitely many #### ID: 66b488d2 Answer Correct Answer: A Rationale Choice A is correct. A system of two linear equations in two variables, x and y, has zero points of intersection if the lines represented by the equations in the xy-plane are distinct and parallel. The graphs of two lines in the xy-plane represented by equations in slope-intercept form, y=mx+b, are distinct if the y-coordinates of their y-intercepts, b, are different and are parallel if their slopes, m, are the same. For the two equations in the given system, y=2x+10 and y=2x-1, the values of b are b0 and b1, respectively, and the values of b2. Since the values of b3 are different, the graphs of these lines have different b3-coordinates of the b4-intercept and are distinct. Since the values of b5 are the same, the graphs of these lines have the same slope and are parallel. Therefore, the graphs of the given equations are lines that intersect at zero points in the b5-coordinates. Choice B is incorrect. The graphs of a system of two linear equations have exactly one point of intersection if the lines represented by the equations have different slopes. Since the given equations represent lines with the same slope, there is not exactly one intersection point. Choice C is incorrect. The graphs of a system of two linear equations can never have exactly two intersection points. Choice D is incorrect. The graphs of a system of two linear equations have infinitely many intersection points when the lines represented by the equations have the same slope and the same *y*-coordinate of the *y*-intercept. Since the given equations represent lines with different *y*-coordinates of their *y*-intercepts, there are not infinitely many intersection points. # **Question ID 89ad6f07** | Assessment | Test | Domain | Skill | Difficulty | |------------|------|---------|--------------------------------------------------|------------| | SAT | Math | Algebra | Systems of two linear equations in two variables | Medium | ### ID: 89ad6f07 $$3x + 6 = 4y$$ $$3x + 4 = 2y$$ The solution to the given system of equations is (x,y). What is the value of y? ### ID: 89ad6f07 Answer Correct Answer: 1 Rationale The correct answer is 1. Subtracting the second equation from the first equation in the given system of equations yields (3x-3x)+(6-4)=4y-2y, which is equivalent to 0+2=2y, or 2=2y. Dividing each side of this equation by 2 yields 1=y. # Question ID 8d876c45 | Assessment | Test | Domain | Skill | Difficulty | |------------|------|---------|--------------------------------------------------|------------| | SAT | Math | Algebra | Systems of two linear equations in two variables | Medium | ### ID: 8d876c45 $$2a + 8b = 198$$ $2a + 4b = 98$ The solution to the given system of equations is (a, b). What is the value of b? ### ID: 8d876c45 Answer Correct Answer: 25 Rationale The correct answer is 25. Subtracting the second equation from the first equation in the given system of equations yields (2a-2a)+(8b-4b)=198-98, which is equivalent to 0+4b=100, or 4b=100. Dividing each side of this equation by 4 yields b=25. # **Question ID 518befa8** | Assessment | Test | Domain | Skill | Difficulty | |------------|------|---------|--------------------------------------------------|------------| | SAT | Math | Algebra | Systems of two linear equations in two variables | Medium | ### ID: 518befa8 Which of the following systems of linear equations has no solution? A. $$oldsymbol{x}=oldsymbol{3}$$ $$y = 5$$ B. $$y = 6x + 6$$ $$y = 5x + 6$$ C. $$y = 16x + 3$$ $$y = 16x + 19$$ D. $$y = 5$$ $$y = 5x + 5$$ #### ID: 518befa8 Answer Correct Answer: C #### Rationale Choice C is correct. A system of two linear equations in two variables, x and y, has no solution if the graphs of the lines represented by the equations in the xy-plane are distinct and parallel. The graphs of two lines in the xy-plane represented by equations in slope-intercept form, y=mx+b, where m and b are constants, are parallel if their slopes, m, are the same and are distinct if their y-coordinates of the y-intercepts, b, are different. In the equations y=16x+3 and y=16x+19, the values of m are each m0, and the values of m1 are m3 and m4, respectively. Since the slopes of these lines are the same, and the y-coordinates of the y-intercepts are different, it follows that the system of linear equations in choice C has no solution. Choice A is incorrect. The lines represented by the equations in this system are a vertical line and a horizontal line. Therefore, this system has a solution, (3,5), rather than no solution. Choice B is incorrect. The two lines represented by these equations have different slopes and the same y-coordinate of the y-intercept. Therefore, this system has a solution, (0,6), rather than no solution. Choice D is incorrect. The two lines represented by these equations are a horizontal line and a line with a slope of 5 that have the same y-coordinate of the y-intercept. Therefore, this system has a solution, (0,5), rather than no solution. # Question ID 6c050229 | Assessment | Test | Domain | Skill | Difficulty | |------------|------|---------|--------------------------------------------------|------------| | SAT | Math | Algebra | Systems of two linear equations in two variables | Medium | ### ID: 6c050229 $$x+3 = -2y+5$$ $$x-3 = 2y+7$$ The solution to the given system of equations is (x, y). What is the value of 2x? - A. -2 - B. **6** - C. 12 - D. **24** #### ID: 6c050229 Answer Correct Answer: C Rationale Choice C is correct. Adding the second equation in the given system to the first equation in the given system yields (x+3)+(x-3)=(-2y+5)+(2y+7). Adding like terms in this equation yields 2x=12. Thus, the value of 2x is 12. Choice A is incorrect. This is the value of y, not 2x. Choice B is incorrect. This is the value of x, not 2x. Choice D is incorrect and may result from conceptual or calculation errors. # **Question ID 89cf1784** | Assessment | Test | Domain | Skill | Difficulty | |------------|------|---------|--------------------------------------------------|------------| | SAT | Math | Algebra | Systems of two linear equations in two variables | Medium | ### ID: 89cf1784 $$y = 6x + 16$$ $$-7x - y = 36$$ What is the solution (x, y) to the given system of equations? A. $$(-4, -8)$$ B. $$\left(-\frac{20}{13}, -\frac{80}{13}\right)$$ C.(4,40) D. (20, 136) #### ID: 89cf1784 Answer Correct Answer: A Rationale Choice A is correct. The given system of linear equations can be solved by the substitution method. The first equation in the given system of equations defines y as 6x+16. Substituting 6x+16 for y in the second equation of the given system of equations yields -7x-(6x+16)=36. Applying the distributive property on the left-hand side of this equation yields -7x-6x-16=36, or -13x-16=36. Adding 16 to both sides of this equation yields -13x=52. Dividing both sides of this equation by -13 yields x=-4. Substituting -4 for x in the first equation of the given system of equations, y=6x+16, yields y=6(-4)+16, or y=-8. Therefore, the solution (x,y) to the given system of equations is (-4,-8). Choice B is incorrect and may result from conceptual or calculation errors. Choice C is incorrect and may result from conceptual or calculation errors. Choice D is incorrect and may result from conceptual or calculation errors. # Question ID 9843892f | Assessment | Test | Domain | Skill | Difficulty | |------------|------|---------|--------------------------------------------------|------------| | SAT | Math | Algebra | Systems of two linear equations in two variables | Medium | ### ID: 9843892f $$3y = 4x + 17$$ $$-3y = 9x - 23$$ The solution to the given system of equations is (x, y). What is the value of 39x? - A. -18 - B. **-6** - C. **6** - D. 18 #### ID: 9843892f Answer Correct Answer: D Rationale Choice D is correct. Adding the second equation to the first equation in the given system of equations yields 3y - 3y = 4x + 9x + 17 - 23, or 0 = 13x - 6. Adding 6 to each side of this equation yields 6 = 13x. Multiplying each side of this equation by 3 yields 18 = 39x. Therefore, the value of 39x is 18. Choice A is incorrect. This is the value of -39x, not 39x. Choice B is incorrect. This is the value of -13x, not 39x. Choice C is incorrect. This is the value of 13x, not 39x. # Question ID ebbc00fb | Assessment | Test | Domain | Skill | Difficulty | |------------|------|---------|--------------------------------------------------|------------| | SAT | Math | Algebra | Systems of two linear equations in two variables | Medium | #### ID: ebbc00fb $$y=- rac{1}{9}x \ y= rac{1}{2}x$$ The solution to the given system of equations is (x, y). What is the value of x? - A. -9 - B. **-7** - C. **0** - D. 2 #### ID: ebbc00fb Answer Correct Answer: C Rationale Choice C is correct. It's given by the first equation in the system that $y=-\frac{1}{9}x$. Substituting $-\frac{1}{9}x$ for y in the second equation in the system yields $-\frac{1}{9}x=\frac{1}{2}x$. Multiplying the left-hand side of this equation by $\frac{2}{2}$ and the right-hand side by $\frac{9}{9}$ yields $-\frac{2}{18}x=\frac{9}{18}x$. Adding $\frac{2}{18}x$ to both sides of this equation yields $0=\frac{11}{18}x$. Multiplying both sides of this equation by $\frac{18}{11}$ yields x=0. Choice A is incorrect and may result from conceptual or calculation errors. Choice B is incorrect and may result from conceptual or calculation errors. Choice D is incorrect and may result from conceptual or calculation errors. # Question ID b2c1a14d | Assessment | Test | Domain | Skill | Difficulty | |------------|------|---------|--------------------------------------------------|------------| | SAT | Math | Algebra | Systems of two linear equations in two variables | Medium | ### ID: b2c1a14d $$y = \frac{2}{7}x + 3$$ One of the two equations in a system of linear equations is given. The system has infinitely many solutions. If the second equation in the system is y = mx + b, where m and b are constants, what is the value of b? - A. **-3** - B. $-\frac{1}{3}$ - C. $\frac{1}{3}$ - D. **3** #### ID: b2c1a14d Answer Correct Answer: D Rationale Choice D is correct. It's given that the system has infinitely many solutions. The graphs of two lines in the xy-plane represented by equations in slope-intercept form, y=mx+b, where m and b are constants, have infinitely many solutions if their slopes, m, are the same and if their y-coordinates of the y-intercepts, b, are also the same. The first equation in the given system is $y=\frac{2}{7}x+3$. For this equation, the slope is $\frac{2}{7}$ and the y-coordinate of the y-intercept is a0. If the second equation is in the form a1 a2 a3, then for the two equations to be equivalent, the values of a3 and a4 in the second equation must equal the corresponding values in the first equation. Therefore, the second equation must have a slope, a4, and a a5-coordinate of the a5-intercept, a6, of a7. Thus, the value of a6 is a8. Choice A is incorrect and may result from conceptual errors. Choice B is incorrect and may result from conceptual errors. Choice C is incorrect and may result from conceptual errors. # Question ID d79caaad | Assessment | Test | Domain | Skill | Difficulty | |------------|------|---------|--------------------------------------------------|------------| | SAT | Math | Algebra | Systems of two linear equations in two variables | Medium | #### ID: d79caaad The combined original price for a mirror and a vase is \$60. After a 25% discount to the mirror and a 45% discount to the vase are applied, the combined sale price for the two items is \$39. Which system of equations gives the original price m, in dollars, of the mirror and the original price v, in dollars, of the vase? A. $$m+v=60$$ $0.55m+0.75v=39$ B. $$m+v=60$$ $0.45m+0.25v=39$ C. $$m + v = 60$$ $0.75m + 0.55v = 39$ D. $$m+v=60$$ $0.25m+0.45v=39$ #### ID: d79caaad Answer Correct Answer: C #### Rationale Choice C is correct. It's given that m represents the original price, in dollars, of the mirror, and v represents the original price, in dollars, of the vase. It's also given that the combined original price for the mirror and the vase is \$60. This can be represented by the equation m+v=60. After a 25% discount to the mirror is applied, the sale price of the mirror is 75% of its original price. This can be represented by the expression 0.75m. After a 45% discount to the vase is applied, the sale price of the vase is 55% of its original price. This can be represented by the expression 0.55v. It's given that the combined sale price for the two items is \$39. This can be represented by the equation 0.75m+0.55v=39. Therefore, the system of equations consisting of the equations m+v=60 and 0.75m+0.55v=39 gives the original price m, in dollars, of the mirror and the original price v, in dollars, of the vase. Choice A is incorrect. The second equation in this system of equations represents a 45% discount to the mirror and a 25% discount to the vase. Choice B is incorrect. The second equation in this system of equations represents a 55% discount to the mirror and a 75% discount to the vase. Choice D is incorrect. The second equation in this system of equations represents a 75% discount to the mirror and a 55% discount to the vase. # **Question ID 81c05538** | Assessment | Test | Domain | Skill | Difficulty | |------------|------|---------|--------------------------------------------------|------------| | SAT | Math | Algebra | Systems of two linear equations in two variables | Medium | ### ID: 81c05538 $$-15x + 25y = 65$$ One of the two equations in a system of linear equations is given. The system has infinitely many solutions. Which of the following could be the second equation in the system? A. $$12x + 20y = 52$$ B. $$12x + 20y = -52$$ C. $$-12x + 20y = 52$$ D. $$-12x + 20y = -52$$ #### ID: 81c05538 Answer Correct Answer: C #### Rationale Choice C is correct. It's given that the system has infinitely many solutions. A system of two linear equations has infinitely many solutions when the two linear equations are equivalent. Dividing both sides of the given equation by 5 yields -3x + 5y = 13. Dividing both sides of choice C by 4 also yields -3x + 5y = 13, so choice C is equivalent to the given equation. Thus, choice C could be the second equation in the system. Choice A is incorrect. The system consisting of this equation and the given equation has one solution, not infinitely many solutions. Choice B is incorrect. The system consisting of this equation and the given equation has one solution, not infinitely many solutions. Choice D is incorrect. The system consisting of this equation and the given equation has no solution, not infinitely many solutions. # Question ID 43f4e0a1 | Assessment | Test | Domain | Skill | Difficulty | |------------|------|---------|--------------------------------------------------|------------| | SAT | Math | Algebra | Systems of two linear equations in two variables | Medium | ### ID: 43f4e0a1 $$x + 3y = 29$$ $$3y = 11$$ The solution to the given system of equations is (x, y). What is the value of x? ### ID: 43f4e0a1 Answer Correct Answer: 18 Rationale The correct answer is 18. It's given by the second equation in the system that 3y = 11. Substituting 11 for 3y in the first equation in the system, x + 3y = 29, yields x + 11 = 29. Subtracting 11 from both sides of this equation yields x = 18. # **Question ID 16fe36f6** | Assessment | Test | Domain | Skill | Difficulty | |------------|------|---------|--------------------------------------------------|------------| | SAT | Math | Algebra | Systems of two linear equations in two variables | Medium | ### ID: 16fe36f6 $$y = \frac{1}{3}x - 14$$ $$y = -x + 18$$ The solution to the given system of equations is (x, y). What is the value of x? ### ID: 16fe36f6 Answer Correct Answer: 24 Rationale The correct answer is 24. The given system of equations can be solved by the substitution method. The first equation in the given system of equations is $y=\frac{1}{3}x-14$. Substituting $\frac{1}{3}x-14$ for y in the second equation in the given system yields $\frac{1}{3}x-14=-x+18$. Adding 14 to both sides of this equation yields $\frac{1}{3}x=-x+32$. Adding x to both sides of this equation yields $\frac{4}{3}x=32$. Multiplying both sides of this equation by $\frac{3}{4}$ yields x=24. # **Question ID 7addd737** | Assessment | Test | Domain | Skill | Difficulty | |------------|------|---------|--------------------------------------------------|------------| | SAT | Math | Algebra | Systems of two linear equations in two variables | Medium | ### ID: 7addd737 $$y = 9x + 12$$ $$x + 7y = 20$$ The solution to the given system of equations is (x, y). What is the value of y? ### ID: 7addd737 Answer Correct Answer: 3 Rationale The correct answer is 3. It's given that y=9x+12. Substituting 9x+12 for y in the second equation in the system, x+7y=20, yields x+7(9x+12)=20, which gives x+63x+84=20, or 64x+84=20. Subtracting 84 from each side of this equation yields 64x=-64. Dividing each side of this equation by 64 yields x=-1. Substituting -1 for x in the first equation in the system, y=9x+12, yields y=9(-1)+12, or y=3. Therefore, the value of y is 3. # Question ID 670da52f | Assessment | Test | Domain | Skill | Difficulty | |------------|------|---------|--------------------------------------------------|------------| | SAT | Math | Algebra | Systems of two linear equations in two variables | Medium | ### ID: 670da52f $$y = 6x + 3$$ One of the two equations in a system of linear equations is given. The system has infinitely many solutions. Which equation could be the second equation in this system? A. $$y = 2(6x) + 3$$ B. $$y = 2(6x + 3)$$ C. $$2(y) = 2(6x) + 3$$ D. $$2(y) = 2(6x + 3)$$ #### ID: 670da52f Answer Correct Answer: D Rationale Choice D is correct. It's given that the system has infinitely many solutions. A system of two linear equations has infinitely many solutions when the two linear equations are equivalent. When one equation is a multiple of another equation, the two equations are equivalent. Multiplying each side of the given equation by 2 yields 2(y)=2(6x+3). Thus, 2(y)=2(6x+3) is equivalent to the given equation and could be the second equation in the system. Choice A is incorrect. The system consisting of this equation and the given equation has one solution rather than infinitely many solutions. Choice B is incorrect. The system consisting of this equation and the given equation has one solution rather than infinitely many solutions. Choice C is incorrect. The system consisting of this equation and the given equation has no solutions rather than infinitely many solutions. # Question ID f637b1a9 | Assessment | Test | Domain | Skill | Difficulty | |------------|------|---------|--------------------------------------------------|------------| | SAT | Math | Algebra | Systems of two linear equations in two variables | Medium | ### ID: f637b1a9 A bus traveled on the highway and on local roads to complete a trip of 160 miles. The trip took 4 hours. The bus traveled at an average speed of 55 miles per hour (mph) on the highway and an average speed of 25 mph on local roads. If x is the time, in hours, the bus traveled on the highway and y is the time, in hours, it traveled on local roads, which system of equations represents this situation? A. $$55x + 25y = 4$$ $x + y = 160$ B. $$55x + 25y = 160$$ $x + y = 4$ C. $$25x + 55y = 4$$ $x + y = 160$ D. $$25x + 55y = 160$$ $x + y = 4$ #### ID: f637b1a9 Answer Correct Answer: B #### Rationale Choice B is correct. If the bus traveled at an average speed of 55 miles per hour (mph) on the highway for x hours, then the bus traveled 55x miles on the highway. If the bus traveled at an average speed of 25 mph on local roads for y hours, then the bus traveled 25y miles on local roads. It's given that the trip was 160 miles. This can be represented by the equation 55x + 25y = 160. It's also given that the trip took 4 hours. This can be represented by the equation x + y = 4. Therefore, the system consisting of the equations 55x + 25y = 160 and x + y = 4 represents this situation. Choice A is incorrect. This system of equations represents a situation where the trip was 4 miles and took 160 hours. Choice C is incorrect. This system of equations represents a situation where the trip was $\bf 4$ miles and took $\bf 160$ hours, and the bus traveled at an average speed of $\bf 25$ mph on the highway and $\bf 55$ mph on local roads. Choice D is incorrect. This system of equations represents a situation where the bus traveled at an average speed of **25 mph** on the highway and **55 mph** on local roads. # **Question ID 96164aab** | Assessment | Test | Domain | Skill | Difficulty | |------------|------|---------|--------------------------------------------------|------------| | SAT | Math | Algebra | Systems of two linear equations in two variables | Medium | ### ID: 96164aab $$8x + y = 5$$ $$y = 9x + 1$$ The solution to the given system of equations is (x, y). What is the value of x? - A. -6 - B. $\frac{4}{17}$ - C. $\frac{6}{17}$ - D. **4** #### ID: 96164aab Answer Correct Answer: B Rationale Choice B is correct. The second equation in the given system is y=9x+1. Substituting 9x+1 for y in the first equation in the given system yields 8x+9x+1=5, which is equivalent to 17x+1=5. Subtracting 1 from both sides of this equation yields 17x=4. Dividing both sides of this equation by 17 yields $x=\frac{4}{17}$. Choice A is incorrect and may result from conceptual or calculation errors. Choice C is incorrect and may result from conceptual or calculation errors. Choice D is incorrect and may result from conceptual or calculation errors. # **Question ID 9be24954** | Assessment | Test | Domain | Skill | Difficulty | |------------|------|---------|--------------------------------------------------|------------| | SAT | Math | Algebra | Systems of two linear equations in two variables | Medium | ### ID: 9be24954 $$y = -2x$$ $$3x + y = 40$$ The solution to the given system of equations is (x, y). What is the value of x? ### ID: 9be24954 Answer Correct Answer: 40 Rationale The correct answer is 40. It's given in the first equation of the system that y=-2x. Substituting -2x for y in the second equation of the system yields 3x+(-2x)=40. Combining like terms on the left-hand side of this equation yields x=40. Therefore, the value of x is 40. # **Question ID dcd58812** | Assessment | Test | Domain | Skill | Difficulty | |------------|------|---------|--------------------------------------------------|------------| | SAT | Math | Algebra | Systems of two linear equations in two variables | Medium | #### ID: dcd58812 Two customers purchased the same kind of bread and eggs at a store. The first customer paid 12.45 dollars for 1 loaf of bread and 2 dozen eggs. The second customer paid 19.42 dollars for 4 loaves of bread and 1 dozen eggs. What is the cost, in dollars, of 1 dozen eggs? - A. 3.77 - B. 3.88 - C. 4.15 - D. 4.34 #### ID: dcd58812 Answer Correct Answer: D Rationale Choice D is correct. Let ℓ represent the cost, in dollars, of 1 loaf of bread, and let d represent the cost, in dollars, of 1 dozen eggs. It's given that the first customer paid 12.45 dollars for 1 loaf of bread and 2 dozen eggs. Therefore, the first customer's purchase can be represented by the equation $\ell + 2d = 12.45$. It's also given that the second customer paid 19.42 dollars for 4 loaves of bread and 1 dozen eggs. Therefore, the second customer's purchase can be represented by the equation $4\ell + d = 19.42$. The equations $\ell + 2d = 12.45$ and $4\ell + d = 19.42$ form a system of linear equations, which can be solved by elimination to find the value of d. Multiplying the first equation in the system by -4 yields $-4\ell - 8d = -49.8$. Adding $-4\ell - 8d = -49.8$ to the second equation, $4\ell + d = 19.42$, yields $(-4\ell + 4\ell) + (-8d + d) = (-49.8 + 19.42)$, which is equivalent to -7d = -30.38. Dividing both sides of this equation by -7 yields d = 4.34. Therefore, the cost, in dollars, of 1 dozen eggs is 4.34. Choice A is incorrect. This is the cost, in dollars, of 1 loaf of bread. Choice B is incorrect and may result from conceptual or calculation errors. Choice C is incorrect and may result from conceptual or calculation errors. # **Question ID 37036956** | Assessment | Test | Domain | Skill | Difficulty | | |------------|------|---------|--------------------------------------------------|------------|--| | SAT | Math | Algebra | Systems of two linear equations in two variables | Medium | | ### ID: 37036956 A proposal for a new library was included on an election ballot. A radio show stated that $\bf 3$ times as many people voted in favor of the proposal as people who voted against it. A social media post reported that $\bf 15,000$ more people voted in favor of the proposal than voted against it. Based on these data, how many people voted against the proposal? - A. 7,500 - B. **15,000** - C. 22,500 - D. 45,000 #### ID: 37036956 Answer Correct Answer: A Rationale Choice A is correct. It's given that a radio show stated that 3 times as many people voted in favor of the proposal as people who voted against it. Let x represent the number of people who voted against the proposal. It follows that 3x is the number of people who voted in favor of the proposal and 3x - x, or 2x, is how many more people voted in favor of the proposal than voted against it. It's also given that a social media post reported that 15,000 more people voted in favor of the proposal than voted against it. Thus, 2x = 15,000. Since 2x = 15,000, the value of x must be half of 15,000, or 7,500. Therefore, 7,500 people voted against the proposal. Choice B is incorrect. This is how many more people voted in favor of the proposal than voted against it, not the number of people who voted against the proposal. Choice C is incorrect. This is the number of people who voted in favor of the proposal, not the number of people who voted against the proposal. Choice D is incorrect and may result from conceptual or calculation errors. # Question ID ea0720d1 | Assessment | Test | Domain | Skill | Difficulty | |------------|------|---------|--------------------------------------------------|------------| | SAT | Math | Algebra | Systems of two linear equations in two variables | Medium | ### ID: ea0720d1 A company that provides whale-watching tours takes groups of 21 people at a time. The company's revenue is 80 dollars per adult and 60 dollars per child. If the company's revenue for one group consisting of adults and children was 1,440 dollars, how many people in the group were children? - A. 3 - B. 9 - C. 12 - D. 18 #### ID: ea0720d1 Answer Correct Answer: C Rationale Choice C is correct. Let x represent the number of children in a whale-watching tour group. Let y represent the number of adults in this group. Because it's given that 21 people are in a group and the group consists of adults and children, it must be true that x+y=21. Since the company's revenue is 60 dollars per child, the total revenue from x children in this group was 60x dollars. Since the company's revenue is 80 dollars per adult, the total revenue from y adults in this group was 80y dollars. Because it's given that the total revenue for this group was 1,440 dollars, it must be true that 60x+80y=1,440. The equations x+y=21 and 60x+80y=1,440 form a linear system of equations that can be solved to find the value of x, which represents the number of children in the group, using the elimination method. Multiplying both sides of the equation x+y=21 by 80 yields 80x+80y=1,680. Subtracting 60x+80y=1,440 from 80x+80y=1,680 yields (80x+80y)-(60x+80y)=1,680-1,440, which is equivalent to 80x-60x+80y-80y=240, or 20x=240. Dividing both sides of this equation by 20 yields x=12. Therefore, 12 people in the group were children. Choice A is incorrect and may result from conceptual or calculation errors. Choice B is incorrect. This is the number of adults in the group, not the number of children in the group. Choice D is incorrect and may result from conceptual or calculation errors. # Question ID b944bec6 | Assessment | Test | Domain | Skill | Difficulty | |------------|------|---------|--------------------------------------------------|------------| | SAT | Math | Algebra | Systems of two linear equations in two variables | Medium | ### ID: b944bec6 At how many points do the graphs of the equations y = x + 20 and y = 8x intersect in the xy-plane? - A. 0 - B. **1** - C. 2 - D. 8 #### ID: b944bec6 Answer Correct Answer: B Rationale Choice B is correct. Each given equation is written in slope-intercept form, y = mx + b, where m is the slope and (0, b) is the y-intercept of the graph of the equation in the xy-plane. The graphs of two lines that have different slopes will intersect at exactly one point. The graph of the first equation is a line with slope 1. The graph of the second equation is a line with slope 1. Since the graphs are lines with different slopes, they will intersect at exactly one point. Choice A is incorrect because two graphs of linear equations have $\bf 0$ intersection points only if they are parallel and therefore have the same slope. Choice C is incorrect because two graphs of linear equations in the *xy*-plane can have only **0**, **1**, or infinitely many points of intersection. Choice D is incorrect because two graphs of linear equations in the xy-plane can have only 0, 1, or infinitely many points of intersection. ### **Question ID 8422756b** | Assessment | Test | Domain | Skill | Difficulty | |------------|------|---------|--------------------------------------------------|------------| | SAT | Math | Algebra | Systems of two linear equations in two variables | Medium | #### ID: 8422756b A wire with a length of 106 inches is cut into two parts. One part has a length of x inches, and the other part has a length of y inches. The value of x is x more than x times the value of x? - A. 25 - B. 28 - C. 56 - D. 86 ### ID: 8422756b Answer Correct Answer: D Rationale Choice D is correct. It's given that a wire with a length of 106 inches is cut into two parts. It's also given that one part has a length of x inches and the other part has a length of y inches. This can be represented by the equation x + y = 106. It's also given that the value of x is 6 more than 4 times the value of y. This can be represented by the equation x = 4y + 6. Substituting 4y + 6 for x in the equation x + y = 106 yields 4y + 6 + y = 106, or 5y + 6 = 106. Subtracting 6 from each side of this equation yields 5y = 100. Dividing each side of this equation by 5 yields y = 20. Substituting 20 for y in the equation x = 4y + 6 yields x = 4(20) + 6, or x = 86. Choice A is incorrect. This value represents less than half of the total length of 106 inches; however, x represents the length of the longer part of the wire, since it's given that the value of x is 6 more than 4 times the value of y. Choice B is incorrect. This value represents less than half of the total length of 106 inches; however, x represents the length of the longer part of the wire, since it's given that the value of x is 6 more than 4 times the value of y. Choice C is incorrect. This represents a part that is **6** more than the length of the other part, rather than **6** more than **4** times the length of the other part. # Question ID b8f0032a | Assessment | Test | Domain | Skill | Difficulty | |------------|------|---------|--------------------------------------------------|------------| | SAT | Math | Algebra | Systems of two linear equations in two variables | Medium | ### ID: b8f0032a $$y = 3x$$ $2x + y = 12$ The solution to the given system of equations is (x, y). What is the value of 5x? - A. 24 - B. **15** - C. 12 - D. **5** #### ID: b8f0032a Answer Correct Answer: C Rationale Choice C is correct. It's given by the first equation in the system that y=3x. Substituting 3x for y in the equation 2x+y=12 yields 2x+3x=12, or 5x=12. Choice A is incorrect and may result from conceptual or calculation errors. Choice B is incorrect and may result from conceptual or calculation errors. Choice D is incorrect and may result from conceptual or calculation errors. # Question ID d874224b | Assessment | Test | Domain | Skill | Difficulty | |------------|------|---------|--------------------------------------------------|------------| | SAT | Math | Algebra | Systems of two linear equations in two variables | Medium | ### ID: d874224b $$x + 2y = 6$$ $$x - 2y = 4$$ The solution to the given system of equations is (x, y). What is the value of x? - A. 2.5 - B. **5** - C. **6** - D. 10 #### ID: d874224b Answer Correct Answer: B Rationale Choice B is correct. Adding the first equation to the second equation in the given system yields (x+2y)+(x-2y)=6+4, or (x+x)+(2y-2y)=10. Combining like terms in this equation yields 2x=10. Dividing both sides of this equation by 2 yields x=5. Thus, the value of x is 5. Choice A is incorrect and may result from conceptual or calculation errors. Choice C is incorrect and may result from conceptual or calculation errors. Choice D is incorrect. This is the value of 2x, not x. # **Question ID 1615e831** | Assessment | Test | Domain | Skill | Difficulty | |------------|------|---------|--------------------------------------------------|------------| | SAT | Math | Algebra | Systems of two linear equations in two variables | Medium | ### ID: 1615e831 $$y = 3x + 9$$ $$3y = 8x - 6$$ The solution to the given system of equations is (x,y). What is the value of x-y? - A. -123 - B. **-33** - C. 3 - D. 57 #### ID: 1615e831 Answer Correct Answer: D Rationale Choice D is correct. The first equation in the given system of equations defines y as 3x+9. Substituting 3x+9 for y in the second equation in the given system of equations yields 3(3x+9)=8x-6. Applying the distributive property on the left-hand side of this equation yields 9x+27=8x-6. Subtracting 8x from both sides of this equation yields x+27=-6. Subtracting x=-330. Substituting x=-331 for x=-332 for x=-333 x=-33 Choice A is incorrect. This is the value of x + y, not x - y. Choice B is incorrect. This is the value of x, not x-y. Choice C is incorrect and may result from conceptual or calculation errors. # Question ID 3a519c76 | Assessment | Test | Domain | Skill | Difficulty | |------------|------|---------|--------------------------------------------------|------------| | SAT | Math | Algebra | Systems of two linear equations in two variables | Medium | #### ID: 3a519c76 The sum of a number x and y is twice as large as a number y. The number y is y less than the number y. Which system of equations describes this situation? A. $$x + 7 = 2y$$ $y = x - 3$ B. $$x+7=2y$$ $y=3-x$ C. $$2(x+7) = y$$ $y = x-3$ D. $$2(x+7) = y$$ $y = 3-x$ #### ID: 3a519c76 Answer Correct Answer: A Rationale Choice A is correct. It's given that the sum of a number x and y is twice as large as a number y. This can be described by the equation x+7=2y. It's also given that the number y is y less than the number y. This can be described by the equation y=x-3. Therefore, the system consisting of the equations x+7=2y and y=x-3 describes this situation. Choice B is incorrect. The equation y = 3 - x describes a situation where the number y is x less than 3. Choice C is incorrect. The equation 2(x+7) = y describes a situation where the number y is twice the sum of a number x and y. Choice D is incorrect. The equation 2(x+7) = y describes a situation where the number y is twice the sum of a number x and y, and the equation y = 3 - x describes a situation where a number y is x less than y.