

# Question ID 752cef17

| Assessment | Test | Domain                    | Skill           | Difficulty |
|------------|------|---------------------------|-----------------|------------|
| PSAT 8/9   | Math | Geometry and Trigonometry | Area and volume | Hard       |

ID: 752cef17

A circle has a radius of **43** meters. What is the area, in square meters, of the circle?

- A.  $\frac{43\pi}{2}$
- B.  $43\pi$
- C.  $86\pi$
- D.  $1,849\pi$

ID: 752cef17 Answer

Correct Answer: D

Rationale

Choice D is correct. The area,  $A$ , of a circle is given by the formula  $A = \pi r^2$ , where  $r$  is the radius of the circle. It's given that the circle has a radius of **43** meters. Substituting **43** for  $r$  in the formula  $A = \pi r^2$  yields  $A = \pi(43)^2$ , or  $A = 1,849\pi$ . Therefore, the area, in square meters, of the circle is  $1,849\pi$ .

Choice A is incorrect. This is the area, in square meters, of a circle with a radius of  $\sqrt{\frac{43}{2}}$  meters.

Choice B is incorrect. This is the area, in square meters, of a circle with a radius of  $\sqrt{43}$  meters.

Choice C is incorrect. This is the circumference, in meters, of the circle.

Question Difficulty: Hard

# Question ID c86d574d

| Assessment | Test | Domain                    | Skill           | Difficulty |
|------------|------|---------------------------|-----------------|------------|
| PSAT 8/9   | Math | Geometry and Trigonometry | Area and volume | Hard       |

ID: c86d574d

A right circular cone has a volume of  $71,148\pi$  cubic centimeters and the area of its base is  $5,929\pi$  square centimeters. What is the slant height, in centimeters, of this cone?

- A. 12
- B. 36
- C. 77
- D. 85

ID: c86d574d Answer

Correct Answer: D

Rationale

Choice D is correct. The volume,  $V$ , of a right circular cone is given by the formula  $V = \frac{1}{3}\pi r^2 h$ , where  $\pi r^2$  is the area of the circular base of the cone and  $h$  is the height. It's given that this right circular cone has a volume of  $71,148\pi$  cubic centimeters and the area of its base is  $5,929\pi$  square centimeters. Substituting  $71,148\pi$  for  $V$  and  $5,929\pi$  for  $\pi r^2$  in the formula  $V = \frac{1}{3}\pi r^2 h$  yields  $71,148\pi = \left(\frac{1}{3}\right)(5,929\pi)(h)$ . Dividing each side of this equation by  $5,929\pi$  yields  $12 = \frac{h}{3}$ . Multiplying each side of this equation by 3 yields  $36 = h$ . Let  $s$  represent the slant height, in centimeters, of this cone. A right triangle is formed by the radius,  $r$ , height,  $h$ , and slant height,  $s$ , of this cone, where  $r$  and  $h$  are the legs of the triangle and  $s$  is the hypotenuse. Using the Pythagorean theorem, the equation  $r^2 + h^2 = s^2$  represents this relationship. Because  $5,929\pi$  is the area of the base and the area of the base is  $\pi r^2$ , it follows that  $5,929\pi = \pi r^2$ . Dividing both sides of this equation by  $\pi$  yields  $5,929 = r^2$ . Substituting  $5,929$  for  $r^2$  and  $36$  for  $h$  in the equation  $r^2 + h^2 = s^2$  yields  $5,929 + 36^2 = s^2$ , which is equivalent to  $5,929 + 1,296 = s^2$ , or  $7,225 = s^2$ . Taking the positive square root of both sides of this equation yields  $85 = s$ . Therefore, the slant height of the cone is  $85$  centimeters.

Choice A is incorrect. This is one-third of the height, in centimeters, not the slant height, in centimeters, of this cone.

Choice B is incorrect. This is the height, in centimeters, not the slant height, in centimeters, of this cone.

Choice C is incorrect. This is the radius, in centimeters, of the base, not the slant height, in centimeters, of this cone.

Question Difficulty: Hard

# Question ID 707f7a8a

| Assessment | Test | Domain                    | Skill           | Difficulty |
|------------|------|---------------------------|-----------------|------------|
| PSAT 8/9   | Math | Geometry and Trigonometry | Area and volume | Hard       |

**ID: 707f7a8a**

A triangle has a base length of **56** centimeters and a height of **112** centimeters. What is the area, in square centimeters, of the triangle?

- A. **168**
- B. **1,568**
- C. **3,136**
- D. **6,272**

**ID: 707f7a8a Answer**

Correct Answer: C

Rationale

Choice C is correct. The area,  $A$ , of a triangle is given by the formula  $A = \frac{1}{2}bh$ , where  $b$  is the base length and  $h$  is the height of the triangle. It's given that a triangle has a base length of **56** centimeters and a height of **112** centimeters. Substituting **56** for  $b$  and **112** for  $h$  in the formula  $A = \frac{1}{2}bh$  yields  $A = \left(\frac{1}{2}\right)(56)(112)$ , or  $A = 3,136$ . Therefore, the area, in square centimeters, of the triangle is **3,136**.

Choice A is incorrect. This is the value of  $56 + 112$ , not  $\left(\frac{1}{2}\right)(56)(112)$ .

Choice B is incorrect. This is the value of  $\left(\frac{1}{4}\right)(56)(112)$ , not  $\left(\frac{1}{2}\right)(56)(112)$ .

Choice D is incorrect. This is the value of  $(56)(112)$ , not  $\left(\frac{1}{2}\right)(56)(112)$ .

Question Difficulty: Hard

# Question ID bd731427

| Assessment | Test | Domain                    | Skill           | Difficulty |
|------------|------|---------------------------|-----------------|------------|
| PSAT 8/9   | Math | Geometry and Trigonometry | Area and volume | Hard       |

**ID: bd731427**

A right circular cylinder has a volume of **432** cubic centimeters. The area of the base of the cylinder is **24** square centimeters. What is the height, in centimeters, of the cylinder?

- A. **18**
- B. **24**
- C. **216**
- D. **10,368**

**ID: bd731427 Answer**

Correct Answer: A

Rationale

Choice A is correct. The volume,  $V$ , of a right circular cylinder is given by the formula  $V = \pi r^2 h$ , where  $\pi r^2$  is the area of the base of the cylinder and  $h$  is the height. It's given that a right circular cylinder has a volume of **432** cubic centimeters and the area of the base is **24** square centimeters. Substituting **432** for  $V$  and **24** for  $\pi r^2$  in the formula  $V = \pi r^2 h$  yields  $432 = 24h$ . Dividing both sides of this equation by **24** yields  $18 = h$ . Therefore, the height of the cylinder, in centimeters, is **18**.

Choice B is incorrect. This is the area of the base, in square centimeters, not the height, in centimeters, of the cylinder.

Choice C is incorrect. This is the height, in centimeters, of a cylinder if its volume is **432** cubic centimeters and the area of its base is **2**, not **24**, cubic centimeters.

Choice D is incorrect. This is the height, in centimeters, of a cylinder if its volume is **432** cubic centimeters and the area of its base is  $\frac{1}{24}$ , not **24**, cubic centimeters.

Question Difficulty: Hard

# Question ID ebcbcf82

| Assessment | Test | Domain                    | Skill           | Difficulty |
|------------|------|---------------------------|-----------------|------------|
| PSAT 8/9   | Math | Geometry and Trigonometry | Area and volume | Hard       |

## ID: ebcbcf82

Circle  $A$  has a radius of  $3n$  and circle  $B$  has a radius of  $129n$ , where  $n$  is a positive constant. The area of circle  $B$  is how many times the area of circle  $A$ ?

- A. 43
- B. 86
- C. 129
- D. 1,849

## ID: ebcbcf82 Answer

Correct Answer: D

### Rationale

Choice D is correct. The area of a circle can be found by using the formula  $A = \pi r^2$ , where  $A$  is the area and  $r$  is the radius of the circle. It's given that the radius of circle  $A$  is  $3n$ . Substituting this value for  $r$  into the formula  $A = \pi r^2$  gives  $A = \pi(3n)^2$ , or  $9\pi n^2$ . It's also given that the radius of circle  $B$  is  $129n$ . Substituting this value for  $r$  into the formula  $A = \pi r^2$  gives  $A = \pi(129n)^2$ , or  $16,641\pi n^2$ . Dividing the area of circle  $B$  by the area of circle  $A$  gives  $\frac{16,641\pi n^2}{9\pi n^2}$ , which simplifies to 1,849. Therefore, the area of circle  $B$  is 1,849 times the area of circle  $A$ .

Choice A is incorrect. This is how many times greater the radius of circle  $B$  is than the radius of circle  $A$ .

Choice B is incorrect and may result from conceptual or calculation errors.

Choice C is incorrect. This is the coefficient on the term that describes the radius of circle  $B$ .

Question Difficulty: Hard

# Question ID cf63d338

| Assessment | Test | Domain                    | Skill           | Difficulty |
|------------|------|---------------------------|-----------------|------------|
| PSAT 8/9   | Math | Geometry and Trigonometry | Area and volume | Hard       |

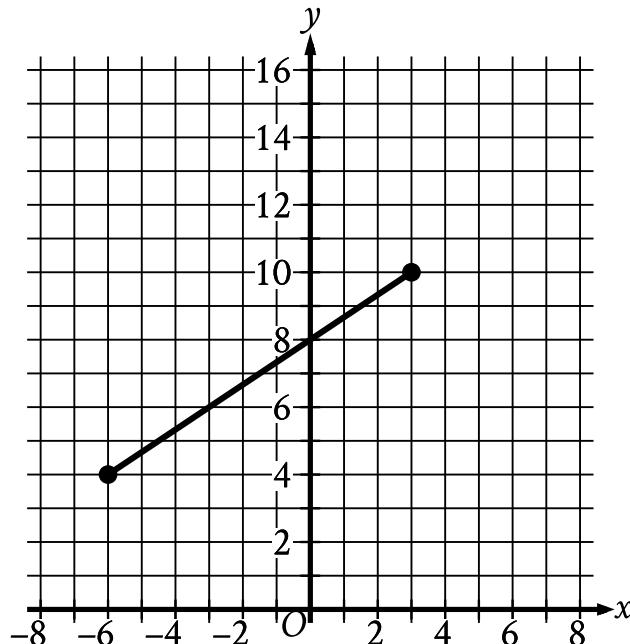
ID: cf63d338

A rectangular poster has an area of **360** square inches. A copy of the poster is made in which the length and width of the original poster are each increased by **20%**. What is the area of the copy, in square inches?

ID: cf63d338 Answer

Correct Answer:  $2592/5$ , 518.4

Rationale


The correct answer is **518.4**. It's given that the area of the original poster is **360** square inches. Let  $\ell$  represent the length, in inches, of the original poster, and let  $w$  represent the width, in inches, of the original poster. Since the area of a rectangle is equal to its length times its width, it follows that  $360 = \ell w$ . It's also given that a copy of the poster is made in which the length and width of the original poster are each increased by **20%**. It follows that the length of the copy is the length of the original poster plus **20%** of the length of the original poster, which is equivalent to  $\ell + \frac{20}{100}\ell$  inches. This length can be rewritten as  $\ell + 0.2\ell$  inches, or  $1.2\ell$  inches. Similarly, the width of the copy is the width of the original poster plus **20%** of the width of the original poster, which is equivalent to  $w + \frac{20}{100}w$  inches. This width can be rewritten as  $w + 0.2w$  inches, or  $1.2w$  inches. Since the area of a rectangle is equal to its length times its width, it follows that the area, in square inches, of the copy is equal to  $(1.2\ell)(1.2w)$ , which can be rewritten as  $(1.2)(1.2)(\ell w)$ . Since  $360 = \ell w$ , the area, in square inches, of the copy can be found by substituting **360** for  $\ell w$  in the expression  $(1.2)(1.2)(\ell w)$ , which yields  $(1.2)(1.2)(360)$ , or **518.4**. Therefore, the area of the copy, in square inches, is **518.4**.

Question Difficulty: Hard

# Question ID beae147d

| Assessment | Test | Domain                    | Skill           | Difficulty |
|------------|------|---------------------------|-----------------|------------|
| PSAT 8/9   | Math | Geometry and Trigonometry | Area and volume | Hard       |

ID: beae147d



The line segment shown in the  $xy$ -plane represents one of the legs of a right triangle. The area of this triangle is  $36\sqrt{13}$  square units. What is the length, in units, of the other leg of this triangle?

- A. 12
- B. 24
- C.  $3\sqrt{13}$
- D.  $18\sqrt{13}$

ID: beae147d Answer

Correct Answer: B

Rationale

Choice B is correct. The length of a segment in the  $xy$ -plane can be found using the distance formula,

$\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$ , where  $(x_1, y_1)$  and  $(x_2, y_2)$  are the endpoints of the segment. The segment shown has endpoints at  $(-6, 4)$  and  $(3, 10)$ . Substituting  $(-6, 4)$  and  $(3, 10)$  for  $(x_1, y_1)$  and  $(x_2, y_2)$ , respectively, in the distance formula yields  $\sqrt{(3 - (-6))^2 + (10 - 4)^2}$ , or  $\sqrt{9^2 + 6^2}$ , which is equivalent to  $\sqrt{81 + 36}$ , or  $\sqrt{117}$ . Let  $x$  represent the length, in units, of the other leg of this triangle. The area,  $A$ , of a right triangle can be calculated using the formula  $A = \frac{1}{2}bh$ , where  $b$  and  $h$  are the lengths of the legs of the triangle. It's given that the area of the triangle is  $36\sqrt{13}$  square units. Substituting  $36\sqrt{13}$  for  $A$ ,  $\sqrt{117}$  for  $b$ , and  $x$  for  $h$  in the formula  $A = \frac{1}{2}bh$  yields  $36\sqrt{13} = \frac{1}{2}(\sqrt{117})(x)$ . Multiplying both sides of this equation by 2 yields  $72\sqrt{13} = x\sqrt{117}$ . Dividing both sides of

this equation by  $\sqrt{117}$  yields  $\frac{72\sqrt{13}}{\sqrt{117}} = x$ . Multiplying the numerator and denominator on the left-hand side of this equation by  $\sqrt{117}$  yields  $\frac{72\sqrt{1,521}}{117} = x$ , or  $\frac{72(39)}{117} = x$ , which is equivalent to  $\frac{2,808}{117} = x$ , or  $24 = x$ . Therefore, the length, in units, of the other leg of this triangle is **24**.

Choice A is incorrect and may result from conceptual or calculation errors.

Choice C is incorrect.  $3\sqrt{13}$  is equivalent to  $\sqrt{117}$ , which is the length, in units, of the line segment shown in the  $xy$ -plane, not the length, in units, of the other leg of the triangle.

Choice D is incorrect and may result from conceptual or calculation errors.

Question Difficulty: Hard

# Question ID 33ddd1e0

| Assessment | Test | Domain                    | Skill           | Difficulty |
|------------|------|---------------------------|-----------------|------------|
| PSAT 8/9   | Math | Geometry and Trigonometry | Area and volume | Hard       |

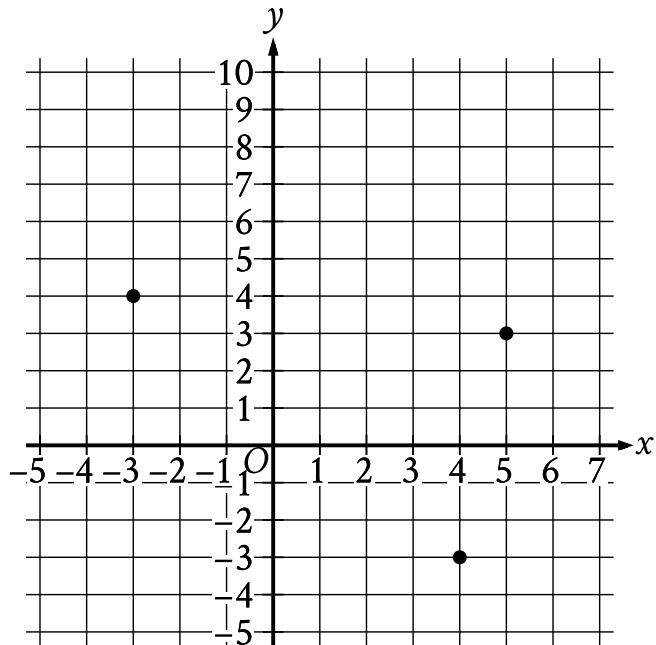
**ID: 33ddd1e0**

The length of each edge of a box is **29** inches. Each side of the box is in the shape of a square. The box does not have a lid. What is the exterior surface area, in square inches, of this box without a lid?

**ID: 33ddd1e0 Answer**

Correct Answer: 4205

Rationale


The correct answer is **4,205**. The exterior surface area of a figure is the sum of the areas of all its faces. It's given that the box does not have a lid and that each side of the box is in the shape of a square. Therefore, the box consists of **5** congruent square faces. It's also given that the length of each edge is **29** inches. Let  $s$  represent the length of an edge of a square. It follows that the area of a square is equal to  $s^2$ . Therefore, the area of each of the **5** square faces is equal to  $29^2$ , or **841**, square inches. Since the box consists of **5** congruent square faces, it follows that the sum of the areas of all its faces, or the exterior surface area of this box without a lid, is  $5(841)$ , or **4,205**, square inches.

Question Difficulty: Hard

# Question ID 9b9a8aef

| Assessment | Test | Domain                    | Skill           | Difficulty |
|------------|------|---------------------------|-----------------|------------|
| PSAT 8/9   | Math | Geometry and Trigonometry | Area and volume | Hard       |

ID: 9b9a8aef



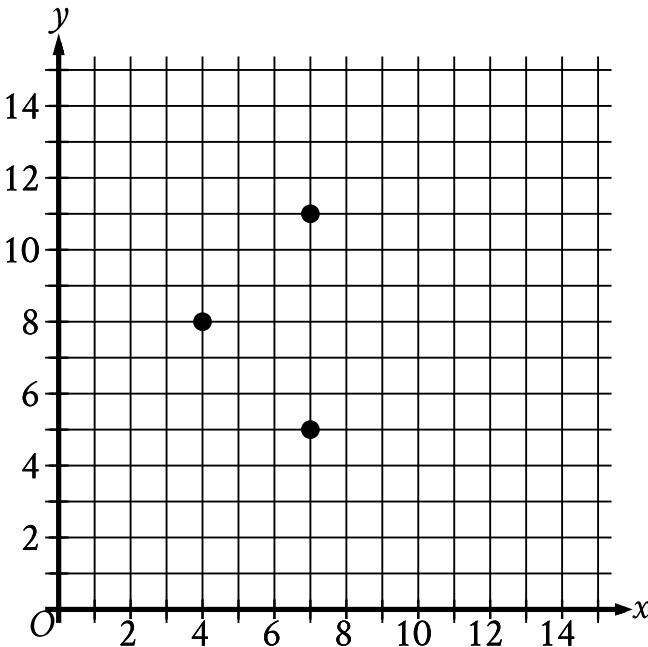
What is the area, in square units, of the triangle formed by connecting the three points shown?

ID: 9b9a8aef Answer

Correct Answer: 24.5, 49/2

## Rationale

The correct answer is **24.5**. It's given that a triangle is formed by connecting the three points shown, which are  $(-3, 4)$ ,  $(5, 3)$ , and  $(4, -3)$ . Let this triangle be triangle A. The area of triangle A can be found by calculating the area of the rectangle that circumscribes it and subtracting the areas of the three triangles that are inside the rectangle but outside triangle A. The rectangle formed by the points  $(-3, 4)$ ,  $(5, 4)$ ,  $(5, -3)$ , and  $(-3, -3)$  circumscribes triangle A. The width, in units, of this rectangle can be found by calculating the distance between the points  $(5, 4)$  and  $(5, -3)$ . This distance is  $4 - (-3)$ , or  $7$ . The length, in units, of this rectangle can be found by calculating the distance between the points  $(5, 4)$  and  $(-3, 4)$ . This distance is  $5 - (-3)$ , or  $8$ . It follows that the area, in square units, of the rectangle is  $(7)(8)$ , or  $56$ . One of the triangles that lies inside the rectangle but outside triangle A is formed by the points  $(-3, 4)$ ,  $(5, 4)$ , and  $(5, 3)$ . The length, in units, of a base of this triangle can be found by calculating the distance between the points  $(5, 4)$  and  $(5, 3)$ . This distance is  $4 - 3$ , or  $1$ . The corresponding height, in units, of this triangle can be found by calculating the distance between the points  $(5, 4)$  and  $(-3, 4)$ . This distance is  $5 - (-3)$ , or  $8$ . It follows that the area, in square units, of this triangle is  $\frac{1}{2}(8)(1)$ , or  $4$ . A second triangle that lies inside the rectangle but outside triangle A is formed by the points  $(4, -3)$ ,  $(5, 3)$ , and  $(5, -3)$ . The length, in units, of a base of this triangle can be found by calculating the distance between the points  $(5, 3)$  and  $(5, -3)$ . This distance is  $3 - (-3)$ , or  $6$ . The corresponding height, in units, of this triangle can be found by calculating the distance between the points  $(5, -3)$  and  $(4, -3)$ . This distance is  $5 - 4$ , or  $1$ . It follows that the area, in square units, of this triangle is  $\frac{1}{2}(1)(6)$ , or  $3$ . The third triangle that lies inside the rectangle but outside triangle A is formed by the points  $(-3, 4)$ ,  $(-3, -3)$ , and  $(4, -3)$ . The length, in units,


of a base of this triangle can be found by calculating the distance between the points  $(4, -3)$  and  $(-3, -3)$ . This distance is  $4 - (-3)$ , or  $7$ . The corresponding height, in units, of this triangle can be found by calculating the distance between the points  $(-3, 4)$  and  $(-3, -3)$ . This distance is  $4 - (-3)$ , or  $7$ . It follows that the area, in square units, of this triangle is  $\frac{1}{2}(7)(7)$ , or  $24.5$ . Thus, the area, in square units, of the triangle formed by connecting the three points shown is  $56 - 4 - 3 - 24.5$ , or  $24.5$ . Note that  $24.5$  and  $49/2$  are examples of ways to enter a correct answer.

Question Difficulty: Hard

# Question ID 226ba345

| Assessment | Test | Domain                    | Skill           | Difficulty |
|------------|------|---------------------------|-----------------|------------|
| PSAT 8/9   | Math | Geometry and Trigonometry | Area and volume | Hard       |

ID: 226ba345



The three points shown define a circle. The circumference of this circle is  $k\pi$ , where  $k$  is a constant. What is the value of  $k$ ?

- A. 3
- B. 6
- C. 7
- D. 9

ID: 226ba345 Answer

Correct Answer: B

Rationale

Choice B is correct. It's given that the three points shown define a circle, so the center of that circle is an equal distance from each of the three points. The point  $(7, 8)$  is halfway between the points  $(7, 5)$  and  $(7, 11)$  and is a distance of 3 units from each of those two points. The point  $(7, 8)$  is also a distance of 3 units from  $(4, 8)$ . Because the point  $(7, 8)$  is the same distance from all three given points, it must be the center of the circle. The radius of a circle is the distance from the center to any point on the circle. Since that distance is 3, it follows that the radius of the circle is 3. The circumference of a circle with radius  $r$  is equal to  $2\pi r$ . It follows that the circumference of the circle is  $2(\pi)(3)$ , or  $6\pi$ . It's given that the circumference of the circle is  $k\pi$ . Therefore, the value of  $k$  is 6.

Choice A is incorrect. This is the radius of the circle, not the value of  $k$  in the expression  $k\pi$ .

Choice C is incorrect. This is the  $x$ -coordinate of the center of the circle, not the value of  $k$  in the expression  $k\pi$ .

Choice D is incorrect. This is the value of  $k$  for which  $k\pi$  represents the area of the circle, in square units, not the circumference of the circle, in units.

Question Difficulty: Hard

# Question ID f682f810

| Assessment | Test | Domain                    | Skill           | Difficulty |
|------------|------|---------------------------|-----------------|------------|
| PSAT 8/9   | Math | Geometry and Trigonometry | Area and volume | Hard       |

**ID: f682f810**

The floor of a ballroom has an area of **600** square meters. An architect creates a scale model of the floor of the ballroom, where the length of each side of the model is  $\frac{1}{10}$  times the length of the corresponding side of the actual floor of the ballroom. What is the area, in square meters, of the scale model?

- A. **6**
- B. **10**
- C. **60**
- D. **150**

**ID: f682f810 Answer**

Correct Answer: A

Rationale

Choice A is correct. It's given that the length of each side of a scale model is  $\frac{1}{10}$  times the length of the corresponding side of the actual floor of a ballroom. Therefore, the area of the scale model is  $\left(\frac{1}{10}\right)^2$ , or  $\frac{1}{100}$ , times the area of the actual floor of the ballroom. It's given that the area of the floor of the ballroom is **600** square meters. Therefore, the area, in square meters, of the scale model is  $\left(\frac{1}{100}\right)(600)$ , or **6**.

Choice B is incorrect and may result from conceptual or calculation errors.

Choice C is incorrect and may result from conceptual or calculation errors.

Choice D is incorrect and may result from conceptual or calculation errors.

Question Difficulty: Hard

# Question ID 2eb9177a

| Assessment | Test | Domain                    | Skill           | Difficulty |
|------------|------|---------------------------|-----------------|------------|
| PSAT 8/9   | Math | Geometry and Trigonometry | Area and volume | Hard       |

## ID: 2eb9177a

A triangle has a base length of **10** centimeters and a corresponding height of **70** centimeters. What is the area, in square centimeters, of the triangle?

- A. **700**
- B. **350**
- C. **175**
- D. **80**

## ID: 2eb9177a Answer

Correct Answer: B

### Rationale

Choice B is correct. The area,  $A$ , of a triangle is given by  $A = \left(\frac{1}{2}\right)bh$ , where  $b$  is the length of a base of the triangle and  $h$  is the corresponding height of the triangle. It's given that a triangle has a base length of **10** centimeters and a corresponding height of **70** centimeters. Substituting **10** for  $b$  and **70** for  $h$  in the formula  $A = \left(\frac{1}{2}\right)bh$  yields  $A = \left(\frac{1}{2}\right)(10)(70)$ , or  $A = 350$ . Therefore, the area, in square centimeters, of the triangle is **350**.

Choice A is incorrect. This is the product of the given base and height of the triangle, not its area.

Choice C is incorrect and may result from conceptual or calculation errors.

Choice D is incorrect. This is the sum of the given base and height of the triangle, not its area.

Question Difficulty: Hard

# Question ID ee0f7ad7

| Assessment | Test | Domain                    | Skill           | Difficulty |
|------------|------|---------------------------|-----------------|------------|
| PSAT 8/9   | Math | Geometry and Trigonometry | Area and volume | Hard       |

ID: ee0f7ad7

A cylinder has a diameter of 8 inches and a height of 12 inches. What is the volume, in cubic inches, of the cylinder?

- A.  $16\pi$
- B.  $96\pi$
- C.  $192\pi$
- D.  $768\pi$

ID: ee0f7ad7 Answer

Correct Answer: C

Rationale

Choice C is correct. The base of a cylinder is a circle with a diameter equal to the diameter of the cylinder. The volume,  $V$ , of a cylinder can be found by multiplying the area of the circular base,  $A$ , by the height of the cylinder,  $h$ , or  $V = Ah$ . The area of a circle can be found using the formula  $A = \pi r^2$ , where  $r$  is the radius of the circle. It's given that the diameter of the cylinder is 8 inches. Thus, the radius of this circle is 4 inches. Therefore, the area of the circular base of the cylinder is  $A = \pi(4)^2$ , or  $16\pi$  square inches. It's given that the height  $h$  of the cylinder is 12 inches. Substituting  $16\pi$  for  $A$  and 12 for  $h$  in the formula  $V = Ah$  gives  $V = 16\pi(12)$ , or  $192\pi$  cubic inches.

Choice A is incorrect. This is the area of the circular base of the cylinder.

Choice B is incorrect and may result from using 8, instead of 16, as the value of  $r^2$  in the formula for the area of a circle.

Choice D is incorrect and may result from using 8, instead of 4, for the radius of the circular base.

Question Difficulty: Hard

# Question ID b23cbeba

| Assessment | Test | Domain                    | Skill           | Difficulty |
|------------|------|---------------------------|-----------------|------------|
| PSAT 8/9   | Math | Geometry and Trigonometry | Area and volume | Hard       |

## ID: b23cbeba

A right circular cylinder has a base diameter of **22** centimeters and a height of **6** centimeters. What is the volume, in cubic centimeters, of the cylinder?

- A.  $132\pi$
- B.  $264\pi$
- C.  $726\pi$
- D.  $2,904\pi$

## ID: b23cbeba Answer

Correct Answer: C

### Rationale

Choice C is correct. The volume,  $V$ , of a right circular cylinder is given by the formula  $V = \pi r^2 h$ , where  $r$  is the radius of the base of the cylinder and  $h$  is the height of the cylinder. It's given that a right circular cylinder has a height of **6** centimeters. Therefore,  $h = 6$ . It's also given that the cylinder has a base diameter of **22** centimeters. The radius of a circle is half the diameter of the circle. Since the base of a right circular cylinder is a circle, it follows that the radius of the base of the right circular cylinder is  $\frac{22}{2}$ , or **11**, centimeters. Therefore,  $r = 11$ . Substituting **11** for  $r$  and **6** for  $h$  in the formula  $V = \pi r^2 h$  yields  $V = \pi(11)^2(6)$ , which is equivalent to  $V = \pi(121)(6)$ , or  $V = 726\pi$ . Therefore, the volume, in cubic centimeters, of the cylinder is **726 $\pi$** .

Choice A is incorrect. This is the volume of a right circular cylinder that has a base diameter of  $2\sqrt{22}$ , not **22**, centimeters and a height of **6** centimeters.

Choice B is incorrect. This is the volume of a right circular cylinder that has a base diameter of  $4\sqrt{11}$ , not **22**, centimeters and a height of **6** centimeters.

Choice D is incorrect. This is the volume of a right circular cylinder that has a base diameter of **44**, not **22**, centimeters and a height of **6** centimeters.

Question Difficulty: Hard

# Question ID aa5a26a3

| Assessment | Test | Domain                    | Skill           | Difficulty |
|------------|------|---------------------------|-----------------|------------|
| PSAT 8/9   | Math | Geometry and Trigonometry | Area and volume | Hard       |

ID: aa5a26a3

Two identical rectangular prisms each have a height of **90 centimeters (cm)**. The base of each prism is a square, and the surface area of each prism is  **$K \text{ cm}^2$** . If the prisms are glued together along a square base, the resulting prism has a surface area of  $\frac{92}{47}K \text{ cm}^2$ . What is the side length, in **cm**, of each square base?

- A. 4
- B. 8
- C. 9
- D. 16

ID: aa5a26a3 Answer

Correct Answer: B

Rationale

Choice B is correct. Let  $x$  represent the side length, in **cm**, of each square base. If the two prisms are glued together along a square base, the resulting prism has a surface area equal to twice the surface area of one of the prisms, minus the area of the two square bases that are being glued together, which yields  $2K - 2x^2 \text{ cm}^2$ . It's given that this resulting surface area is equal to  $\frac{92}{47}K \text{ cm}^2$ , so  $2K - 2x^2 = \frac{92}{47}K$ . Subtracting  $\frac{92}{47}K$  from both sides of this equation yields  $2K - \frac{92}{47}K - 2x^2 = 0$ . This equation can be rewritten by multiplying  $2K$  on the left-hand side by  $\frac{47}{47}$ , which yields  $\frac{94}{47}K - \frac{92}{47}K - 2x^2 = 0$ , or  $\frac{2}{47}K - 2x^2 = 0$ . Adding  $2x^2$  to both sides of this equation yields  $\frac{2}{47}K = 2x^2$ . Multiplying both sides of this equation by  $\frac{47}{2}$  yields  $K = 47x^2$ . The surface area  $K$ , in  **$\text{cm}^2$** , of each rectangular prism is equivalent to the sum of the areas of the two square bases and the areas of the four lateral faces. Since the height of each rectangular prism is **90 cm** and the side length of each square base is  **$x \text{ cm}$** , it follows that the area of each square base is  $x^2 \text{ cm}^2$  and the area of each lateral face is  $90x \text{ cm}^2$ . Therefore, the surface area of each rectangular prism can be represented by the expression  $2x^2 + 4(90x)$ , or  $2x^2 + 360x$ . Substituting this expression for  $K$  in the equation  $K = 47x^2$  yields  $2x^2 + 360x = 47x^2$ . Subtracting  $2x^2$  and  $360x$  from both sides of this equation yields  $0 = 45x^2 - 360x$ . Factoring  $x$  from the right-hand side of this equation yields  $0 = x(45x - 360)$ . Applying the zero product property, it follows that  $x = 0$  and  $45x - 360 = 0$ . Adding  $360$  to both sides of the equation  $45x - 360 = 0$  yields  $45x = 360$ . Dividing both sides of this equation by  $45$  yields  $x = 8$ . Since a side length of a rectangular prism can't be **0**, the length of each square base is **8 cm**.

Choice A is incorrect and may result from conceptual or calculation errors.

Choice C is incorrect and may result from conceptual or calculation errors.

Choice D is incorrect and may result from conceptual or calculation errors.

Question Difficulty: Hard

# Question ID e8a76dc3

| Assessment | Test | Domain                    | Skill           | Difficulty |
|------------|------|---------------------------|-----------------|------------|
| PSAT 8/9   | Math | Geometry and Trigonometry | Area and volume | Hard       |

## ID: e8a76dc3

Circle  $K$  has a radius of 4 millimeters (mm). Circle  $L$  has an area of  $100\pi$  mm<sup>2</sup>. What is the total area, in mm<sup>2</sup>, of circles  $K$  and  $L$ ?

- A.  $14\pi$
- B.  $28\pi$
- C.  $56\pi$
- D.  $116\pi$

## ID: e8a76dc3 Answer

Correct Answer: D

### Rationale

Choice D is correct. The area,  $A$ , of a circle is given by the formula  $A = \pi r^2$ , where  $r$  represents the radius of the circle. It's given that circle  $K$  has a radius of 4 millimeters (mm). Substituting 4 for  $r$  in the formula  $A = \pi r^2$  yields  $A = \pi(4)^2$ , or  $A = 16\pi$ . Therefore, the area of circle  $K$  is  $16\pi$  mm<sup>2</sup>. It's given that circle  $L$  has an area of  $100\pi$  mm<sup>2</sup>. Therefore, the total area, in mm<sup>2</sup>, of circles  $K$  and  $L$  is  $16\pi + 100\pi$ , or  $116\pi$ .

Choice A is incorrect. This is the sum of the radii, in mm, of circles  $K$  and  $L$  multiplied by  $\pi$ , not the total area, in mm<sup>2</sup>, of the circles.

Choice B is incorrect. This is the sum of the diameters, in mm, of circles  $K$  and  $L$  multiplied by  $\pi$ , not the total area, in mm<sup>2</sup>, of the circles.

Choice C is incorrect and may result from conceptual or calculation errors.

Question Difficulty: Hard

# Question ID 6c5aefc0

| Assessment | Test | Domain                    | Skill           | Difficulty |
|------------|------|---------------------------|-----------------|------------|
| PSAT 8/9   | Math | Geometry and Trigonometry | Area and volume | Hard       |

**ID: 6c5aefc0**

A right circular cylinder has a volume of **377** cubic centimeters. The area of the base of the cylinder is **13** square centimeters. What is the height, in centimeters, of the cylinder?

**ID: 6c5aefc0 Answer**

Correct Answer: 29

Rationale

The correct answer is **29**. The volume,  $V$ , of a right circular cylinder is given by the formula  $V = \pi r^2 h$ , where  $r$  is the radius of the base of the cylinder and  $h$  is the height of the cylinder. Since the base of the cylinder is a circle with radius  $r$ , the area of the base of the cylinder is  $\pi r^2$ . It's given that a right circular cylinder has a volume of **377** cubic centimeters; therefore,  $V = 377$ . It's also given that the area of the base of the cylinder is **13** square centimeters; therefore,  $\pi r^2 = 13$ . Substituting **377** for  $V$  and **13** for  $\pi r^2$  in the formula  $V = \pi r^2 h$  yields  $377 = 13h$ . Dividing both sides of this equation by **13** yields  $29 = h$ . Therefore, the height of the cylinder, in centimeters, is **29**.

Question Difficulty: Hard

# Question ID 5f20344a

| Assessment | Test | Domain                    | Skill           | Difficulty |
|------------|------|---------------------------|-----------------|------------|
| PSAT 8/9   | Math | Geometry and Trigonometry | Area and volume | Hard       |

**ID: 5f20344a**

A right circular cylinder has a height of **8 meters (m)** and a base with a radius of **12 m**. What is the volume, in  **$m^3$** , of the cylinder?

- A.  $8\pi$
- B.  $20\pi$
- C.  $768\pi$
- D.  $1,152\pi$

**ID: 5f20344a Answer**

Correct Answer: D

Rationale

Choice D is correct. The volume,  $V$ , of a right circular cylinder is given by  $V = \pi r^2 h$ , where  $r$  is the radius of the circular base and  $h$  is the height of the cylinder. It's given that the cylinder has a height of 8 meters and a base with a radius of 12 meters. Substituting 12 for  $r$  and 8 for  $h$  in  $V = \pi r^2 h$  yields  $V = \pi(12)^2(8)$ , or  $V = 1,152\pi$ . Therefore, the volume, in  $m^3$ , of the cylinder is  $1,152\pi$ .

Choice A is incorrect and may result from conceptual or calculation errors.

Choice B is incorrect and may result from conceptual or calculation errors.

Choice C is incorrect. This is the volume, in  $m^3$ , of a cylinder with a radius of 8 meters and a height of 12 meters.

Question Difficulty: Hard

# Question ID 96e751b0

| Assessment | Test | Domain                    | Skill           | Difficulty |
|------------|------|---------------------------|-----------------|------------|
| PSAT 8/9   | Math | Geometry and Trigonometry | Area and volume | Hard       |

**ID: 96e751b0**

A sphere has a radius of  $\frac{17}{5}$  feet. What is the volume, in cubic feet, of the sphere?

- A.  $\frac{5\pi}{17}$
- B.  $\frac{68\pi}{15}$
- C.  $\frac{32\pi}{5}$
- D.  $\frac{19,652\pi}{375}$

**ID: 96e751b0 Answer**

Correct Answer: D

Rationale

Choice D is correct. The volume,  $V$ , of a sphere can be found using the formula  $V = \frac{4}{3}\pi r^3$ , where  $r$  is the radius of the sphere. It's given that the sphere has a radius of  $\frac{17}{5}$  feet. Substituting  $\frac{17}{5}$  for  $r$  in the formula  $V = \frac{4}{3}\pi r^3$  yields  $V = \frac{4}{3}\pi\left(\frac{17}{5}\right)^3$ , which is equivalent to  $V = \frac{4}{3}\pi\left(\frac{4,913}{125}\right)$ , or  $V = \frac{19,652\pi}{375}$ . Therefore, the volume, in cubic feet, of the sphere is  $\frac{19,652\pi}{375}$ .

Choice A is incorrect and may result from conceptual or calculation errors.

Choice B is incorrect. This is the volume, in cubic feet, of a sphere with a radius of  $\sqrt[3]{\frac{17}{5}}$  feet.

Choice C is incorrect and may result from conceptual or calculation errors.

Question Difficulty: Hard

# Question ID 6245a010

| Assessment | Test | Domain                    | Skill           | Difficulty |
|------------|------|---------------------------|-----------------|------------|
| PSAT 8/9   | Math | Geometry and Trigonometry | Area and volume | Hard       |

ID: 6245a010

The circumference of the base of a right circular cylinder is  $20\pi$  meters, and the height of the cylinder is **6** meters. What is the volume, in cubic meters, of the cylinder?

- A.  $60\pi$
- B.  $120\pi$
- C.  $600\pi$
- D.  $2,400\pi$

ID: 6245a010 Answer

Correct Answer: C

Rationale

Choice C is correct. The volume,  $V$ , of a right circular cylinder is given by the formula  $V = \pi r^2 h$ , where  $r$  is the radius of the base of the cylinder and  $h$  is the height of the cylinder. It's given that a right circular cylinder has a height of **6** meters. Therefore,  $h = 6$ . It's also given that the right circular cylinder has a base with a circumference of  $20\pi$  meters. The circumference,  $C$ , of a circle is given by  $C = 2\pi r$ , where  $r$  is the radius of the circle. Substituting  $20\pi$  for  $C$  in the formula  $C = 2\pi r$  yields  $20\pi = 2\pi r$ . Dividing each side of this equation by  $2\pi$  yields  $10 = r$ . Substituting  $10$  for  $r$  and  $6$  for  $h$  in the formula  $V = \pi r^2 h$  yields  $V = \pi(10)^2(6)$ , or  $V = 600\pi$ . Therefore, the volume, in cubic meters, of the cylinder is  $600\pi$ .

Choice A is incorrect and may result from conceptual or calculation errors.

Choice B is incorrect. This is the lateral surface area, not the volume, of the cylinder.

Choice D is incorrect. This is the result of using the diameter, not the radius, for the value of  $r$  in the formula  $V = \pi r^2 h$ .

Question Difficulty: Hard

# Question ID 0d36e672

| Assessment | Test | Domain                    | Skill           | Difficulty |
|------------|------|---------------------------|-----------------|------------|
| PSAT 8/9   | Math | Geometry and Trigonometry | Area and volume | Hard       |

ID: 0d36e672

Rectangles  $ABCD$  and  $EFGH$  are similar. The length of each side of  $EFGH$  is 6 times the length of the corresponding side of  $ABCD$ . The area of  $ABCD$  is 54 square units. What is the area, in square units, of  $EFGH$ ?

- A. 9
- B. 36
- C. 324
- D. 1,944

ID: 0d36e672 Answer

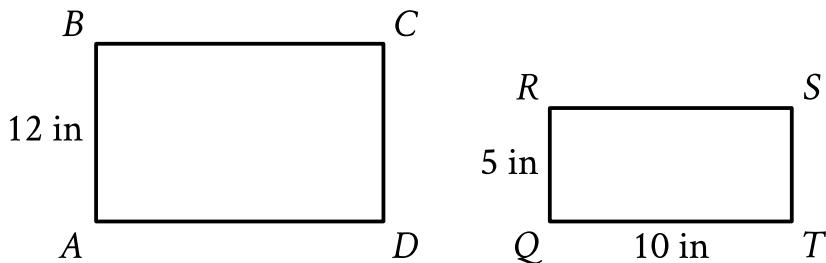
Correct Answer: D

Rationale

Choice D is correct. The area of a rectangle is given by  $bh$ , where  $b$  is the length of the base of the rectangle and  $h$  is its height. Let  $x$  represent the length, in units, of the base of rectangle  $ABCD$ , and let  $y$  represent its height, in units. Substituting  $x$  for  $b$  and  $y$  for  $h$  in the formula  $bh$  yields  $xy$ . Therefore, the area, in square units, of  $ABCD$  can be represented by the expression  $xy$ . It's given that the length of each side of  $EFGH$  is 6 times the length of the corresponding side of  $ABCD$ . Therefore, the length, in units, of the base of  $EFGH$  can be represented by the expression  $6x$ , and its height, in units, can be represented by the expression  $6y$ . Substituting  $6x$  for  $b$  and  $6y$  for  $h$  in the formula  $bh$  yields  $(6x)(6y)$ , which is equivalent to  $36xy$ . Therefore, the area, in square units, of  $EFGH$  can be represented by the expression  $36xy$ . It's given that the area of  $ABCD$  is 54 square units. Since  $xy$  represents the area, in square units, of  $ABCD$ , substituting 54 for  $xy$  in the expression  $36xy$  yields  $36(54)$ , or 1,944. Therefore, the area, in square units, of  $EFGH$  is 1,944.

Choice A is incorrect. This is the area of a rectangle where the length of each side of the rectangle is  $\sqrt{\frac{1}{6}}$ , not 6, times the length of the corresponding side of  $ABCD$ .

Choice B is incorrect. This is the area of a rectangle where the length of each side of the rectangle is  $\sqrt{\frac{2}{3}}$ , not 6, times the length of the corresponding side of  $ABCD$ .


Choice C is incorrect. This is the area of a rectangle where the length of each side of the rectangle is  $\sqrt{6}$ , not 6, times the length of the corresponding side of  $ABCD$ .

Question Difficulty: Hard

# Question ID 7bea77c0

| Assessment | Test | Domain                    | Skill           | Difficulty |
|------------|------|---------------------------|-----------------|------------|
| PSAT 8/9   | Math | Geometry and Trigonometry | Area and volume | Hard       |

ID: 7bea77c0



Note: Figure not drawn to scale.

Rectangles  $ABCD$  and  $QRST$  shown are similar, where  $A, B, C$ , and  $D$  correspond to  $Q, R, S$ , and  $T$ , respectively. What is the length, in inches (in), of  $\overline{AD}$ ?

- A. 60
- B. 24
- C. 17
- D. 10

ID: 7bea77c0 Answer

Correct Answer: B

Rationale

Choice B is correct. It's given that rectangles  $ABCD$  and  $QRST$  are similar, where  $A, B, C$ , and  $D$  correspond to  $Q, R, S$ , and  $T$ , respectively. It follows that  $\overline{AB}$  corresponds to  $\overline{QR}$  and  $\overline{AD}$  corresponds to  $\overline{QT}$ . If two rectangles are similar, then the lengths of their corresponding sides are proportional. It's given in the figure that the length of  $\overline{AB}$  is 12 inches, the length of  $\overline{QR}$  is 5 inches, and the length of  $\overline{QT}$  is 10 inches. If  $x$  is the length, in inches, of  $\overline{AD}$ , then  $\frac{12}{5}$  is equivalent to  $\frac{x}{10}$ . Therefore, the value of  $x$  can be found using the equation  $\frac{12}{5} = \frac{x}{10}$ . Multiplying each side of this equation by 10 yields  $\frac{120}{5} = x$ , or  $24 = x$ . Therefore, the length, in inches, of  $\overline{AD}$  is 24.

Choice A is incorrect and may result from conceptual or calculation errors.

Choice C is incorrect and may result from conceptual or calculation errors.

Choice D is incorrect. This is the length, in inches, of  $\overline{QT}$ , not  $\overline{AD}$ .

Question Difficulty: Hard

# Question ID 9af4eee3

| Assessment | Test | Domain                    | Skill           | Difficulty |
|------------|------|---------------------------|-----------------|------------|
| PSAT 8/9   | Math | Geometry and Trigonometry | Area and volume | Hard       |

## ID: 9af4eee3

Rectangle  $ABCD$  is similar to rectangle  $EFGH$ . The area of rectangle  $ABCD$  is 648 square inches, and the area of rectangle  $EFGH$  is 72 square inches. The length of the longest side of rectangle  $ABCD$  is 36 inches. What is the length, in inches, of the longest side of rectangle  $EFGH$ ?

- A. 4
- B. 9
- C. 12
- D. 36

## ID: 9af4eee3 Answer

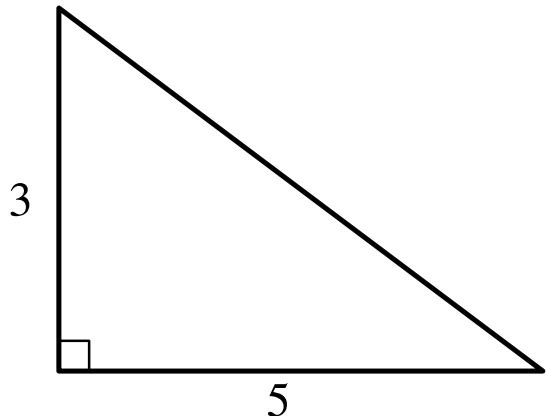
Correct Answer: C

### Rationale

Choice C is correct. It's given that rectangle  $ABCD$  is similar to rectangle  $EFGH$ . Therefore, if the length of each side of rectangle  $ABCD$  is  $k$  times the length of the corresponding side of rectangle  $EFGH$ , then the area of rectangle  $ABCD$  is  $k^2$  times the area of rectangle  $EFGH$ . It's given that the area of rectangle  $ABCD$  is 648 square inches and the area of rectangle  $EFGH$  is 72 square inches. It follows that  $k^2 = \frac{648}{72}$ , or  $k^2 = 9$ . Taking the square root of each side of this equation yields  $k = \sqrt{9}$ , or  $k = 3$ . It follows that the length of each side of rectangle  $ABCD$  is 3 times the length of the corresponding side of rectangle  $EFGH$ . It's given that the length of the longest side of rectangle  $ABCD$  is 36 inches. Therefore, 36 inches is 3 times the length of the longest side of rectangle  $EFGH$ , and the longest side of rectangle  $EFGH$  is equal to  $\frac{36}{3}$ , or 12, inches.

Choice A is incorrect. This is the length, in inches, of the longest side of a rectangle with side lengths that are  $\frac{1}{9}$  the corresponding side lengths of rectangle  $ABCD$ , rather than a rectangle with an area that is  $\frac{1}{9}$  the area of rectangle  $ABCD$ .

Choice B is incorrect. This is the factor by which the area of rectangle  $ABCD$  is larger than the area of rectangle  $EFGH$ , not the length, in inches, of the longest side of rectangle  $EFGH$ .


Choice D is incorrect. This is the length, in inches, of the longest side of rectangle  $ABCD$ , not rectangle  $EFGH$ .

Question Difficulty: Hard

# Question ID 9ee4e592

| Assessment | Test | Domain                    | Skill           | Difficulty |
|------------|------|---------------------------|-----------------|------------|
| PSAT 8/9   | Math | Geometry and Trigonometry | Area and volume | Hard       |

ID: 9ee4e592



Note: Figure not drawn to scale.

The figure shows the lengths, in inches, of two sides of a right triangle. What is the area of the triangle, in square inches?

ID: 9ee4e592 Answer

Correct Answer: 7.5, 15/2

Rationale

The correct answer is  $\frac{15}{2}$ . The area,  $A$ , of a triangle is given by the formula  $A = \frac{1}{2}bh$ , where  $b$  is the length of the base of the triangle and  $h$  is the height of the triangle. In the right triangle shown, the length of the base of the triangle is 5 inches, and the height is 3 inches. It follows that  $b = 5$  and  $h = 3$ . Substituting 5 for  $b$  and 3 for  $h$  in the formula  $A = \frac{1}{2}bh$  yields  $A = \frac{1}{2}(5)(3)$ , which is equivalent to  $A = \frac{1}{2}(15)$ , or  $A = \frac{15}{2}$ . Therefore, the area of the triangle, in square inches, is  $\frac{15}{2}$ . Note that 15/2 and 7.5 are examples of ways to enter a correct answer.

Question Difficulty: Hard

# Question ID 02811722

| Assessment | Test | Domain                    | Skill           | Difficulty |
|------------|------|---------------------------|-----------------|------------|
| PSAT 8/9   | Math | Geometry and Trigonometry | Area and volume | Hard       |

**ID: 02811722**

A right rectangular prism has a length of **28 centimeters (cm)**, a width of **15 cm**, and a height of **16 cm**. What is the surface area, **in cm<sup>2</sup>**, of the right rectangular prism?

**ID: 02811722 Answer**

Correct Answer: 2216

Rationale

The correct answer is **2,216**. The surface area of a prism is the sum of the areas of all its faces. A right rectangular prism consists of six rectangular faces, where opposite faces are congruent. It's given that this prism has a length of **28 cm**, a width of **15 cm**, and a height of **16 cm**. Thus, for this prism, there are two faces with area  $(28)(15) \text{ cm}^2$ , two faces with area  $(28)(16) \text{ cm}^2$ , and two faces with area  $(15)(16) \text{ cm}^2$ . Therefore, the surface area, **in cm<sup>2</sup>**, of the right rectangular prism is  $2(28)(15) + 2(28)(16) + 2(15)(16)$ , or **2,216**.

Question Difficulty: Hard

# Question ID 090d4df6

| Assessment | Test | Domain                    | Skill           | Difficulty |
|------------|------|---------------------------|-----------------|------------|
| PSAT 8/9   | Math | Geometry and Trigonometry | Area and volume | Hard       |

ID: 090d4df6

Square A has side lengths that are **166** times the side lengths of square B. The area of square A is  **$k$**  times the area of square B. What is the value of  **$k$** ?

ID: 090d4df6 Answer

Correct Answer: 27556

Rationale

The correct answer is **27,556**. The area of a square is  $s^2$ , where  $s$  is the side length of the square. Let  $x$  represent the length of each side of square B. Substituting  $x$  for  $s$  in  $s^2$  yields  $x^2$ . It follows that the area of square B is  $x^2$ . It's given that square A has side lengths that are **166** times the side lengths of square B. Since  $x$  represents the length of each side of square B, the length of each side of square A can be represented by the expression  **$166x$** . It follows that the area of square A is  $(166x)^2$ , or  **$27,556x^2$** . It's given that the area of square A is  **$k$**  times the area of square B. Since the area of square A is equal to  **$27,556x^2$** , and the area of square B is equal to  **$x^2$** , an equation representing the given statement is  **$27,556x^2 = kx^2$** . Since  $x$  represents the length of each side of square B, the value of  $x$  must be positive. Therefore, the value of  $x^2$  is also positive, so it does not equal 0. Dividing by  $x^2$  on both sides of the equation  **$27,556x^2 = kx^2$**  yields  **$27,556 = k$** . Therefore, the value of  **$k$**  is **27,556**.

Question Difficulty: Hard

# Question ID b6a9bc22

| Assessment | Test | Domain                    | Skill           | Difficulty |
|------------|------|---------------------------|-----------------|------------|
| PSAT 8/9   | Math | Geometry and Trigonometry | Area and volume | Hard       |

**ID: b6a9bc22**

Square A has side lengths that are **246** times the side lengths of square B. The area of square A is  **$k$**  times the area of square B. What is the value of  **$k$** ?

- A. **60,516**
- B. **492**
- C. **246**
- D. **123**

**ID: b6a9bc22 Answer**

Correct Answer: A

Rationale

Choice A is correct. The area of a square is  $s^2$ , where  $s$  is the side length of the square. Therefore, the area of square B is  $b^2$ , where  $b$  is the side length of square B. It's given that square A has side lengths that are **246** times the side lengths of square B. Therefore, the side length of square A can be represented by the expression  **$246b$** . It follows that the area of square A is  $(246b)^2$ , or  **$60,516b^2$** . It's given that the area of square A is  **$k$**  times the area of square B, so  $60,516b^2 = kb^2$ . Therefore, the value of  **$k$**  is **60,516**.

Choice B is incorrect and may result from conceptual or calculation errors.

Choice C is incorrect and may result from conceptual or calculation errors.

Choice D is incorrect and may result from conceptual or calculation errors.

Question Difficulty: Hard

# Question ID bfe225c0

| Assessment | Test | Domain                    | Skill           | Difficulty |
|------------|------|---------------------------|-----------------|------------|
| PSAT 8/9   | Math | Geometry and Trigonometry | Area and volume | Hard       |

**ID: bfe225c0**

Parallelogram  $ABCD$  is similar to parallelogram  $PQRS$ . The length of each side of parallelogram  $PQRS$  is 2 times the length of its corresponding side of parallelogram  $ABCD$ . The area of parallelogram  $ABCD$  is 5 square centimeters. What is the area, in square centimeters, of parallelogram  $PQRS$ ?

- A. 7
- B. 10
- C. 20
- D. 25

**ID: bfe225c0 Answer**

Correct Answer: C

Rationale

Choice C is correct. It's given that parallelogram  $ABCD$  is similar to parallelogram  $PQRS$ . When two parallelograms are similar, if the scale factor between their corresponding side lengths is  $k$ , the scale factor between their areas is  $k^2$ . It's given that the length of each side of parallelogram  $PQRS$  is 2 times the length of its corresponding side of parallelogram  $ABCD$ , so the scale factor between their corresponding side lengths is 2. It follows that the scale factor between their areas is  $2^2$ , or 4. It's given that the area, in square centimeters, of parallelogram  $ABCD$  is 5. It follows that the area, in square centimeters, of parallelogram  $PQRS$  is  $5(4)$ , or 20.

Choice A is incorrect and may result from conceptual or calculation errors.

Choice B is incorrect and may result from conceptual or calculation errors.

Choice D is incorrect and may result from conceptual or calculation errors.

Question Difficulty: Hard

## Question ID c9fee8a2

| Assessment | Test | Domain                    | Skill           | Difficulty |
|------------|------|---------------------------|-----------------|------------|
| PSAT 8/9   | Math | Geometry and Trigonometry | Area and volume | Hard       |

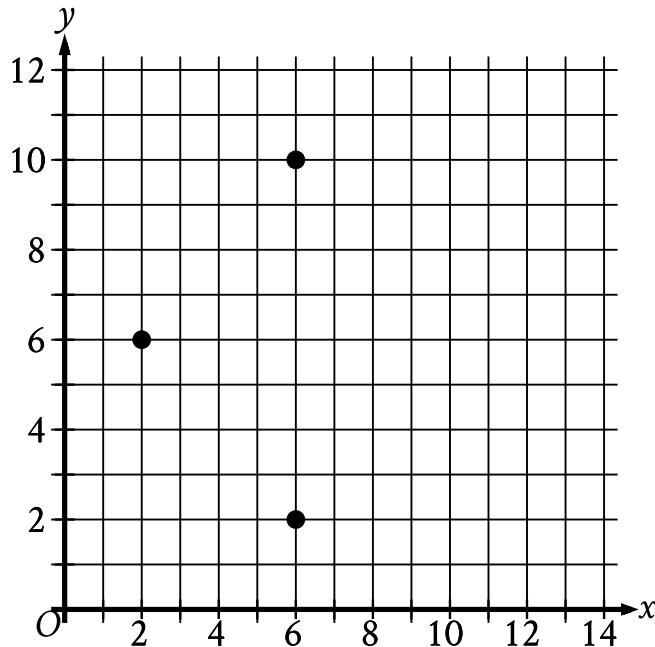
ID: c9fee8a2

A cube has a volume of **474,552** cubic units. What is the surface area, in square units, of the cube?

ID: c9fee8a2 Answer

Correct Answer: 36504

Rationale


The correct answer is **36,504**. The volume of a cube can be found using the formula  $V = s^3$ , where  $s$  represents the edge length of a cube. It's given that this cube has a volume of **474,552** cubic units. Substituting **474,552** for  $V$  in  $V = s^3$  yields  $474,552 = s^3$ . Taking the cube root of both sides of this equation yields  $78 = s$ . Thus, the edge length of the cube is **78** units. Since each face of a cube is a square, it follows that each face has an edge length of **78** units. The area of a square can be found using the formula  $A = s^2$ . Substituting **78** for  $s$  in this formula yields  $A = 78^2$ , or  $A = 6,084$ . Therefore, the area of one face of this cube is **6,084** square units. Since a cube has **6** faces, the surface area, in square units, of this cube is  $6(6,084)$ , or **36,504**.

Question Difficulty: Hard

# Question ID fac3be15

| Assessment | Test | Domain                    | Skill           | Difficulty |
|------------|------|---------------------------|-----------------|------------|
| PSAT 8/9   | Math | Geometry and Trigonometry | Area and volume | Hard       |

ID: fac3be15



The three points shown define a circle. The circumference of this circle is  $k\pi$ , where  $k$  is a constant. What is the value of  $k$ ?

ID: fac3be15 Answer

Correct Answer: 8

Rationale

The correct answer is 8. It's given that the three points shown define a circle, so the center of that circle is an equal distance from each of the three points. The point  $(6, 6)$  is halfway between the points  $(6, 2)$  and  $(6, 10)$ , and is a distance of 4 units from each of those two points. The point  $(6, 6)$  is also a distance of 4 units from  $(2, 6)$ . Because the point  $(6, 6)$  is the same distance from all three points shown, it must be the center of the circle. Since that distance is 4, it follows that the radius of the circle is 4. The circumference of a circle with radius  $r$  is equal to  $2\pi r$ . It follows that the circumference of the given circle is  $2\pi(4)$ , or  $8\pi$ . It's given that the circumference of the circle is  $k\pi$ . Therefore, the value of  $k$  is 8.

Question Difficulty: Hard

## Question ID 14be12ff

| Assessment | Test | Domain                    | Skill           | Difficulty |
|------------|------|---------------------------|-----------------|------------|
| PSAT 8/9   | Math | Geometry and Trigonometry | Area and volume | Hard       |

### ID: 14be12ff

A hemisphere is half of a sphere. If a hemisphere has a radius of **27** inches, which of the following is closest to the volume, in cubic inches, of this hemisphere?

- A. 1,500
- B. 6,100
- C. 30,900
- D. 41,200

### ID: 14be12ff Answer

Correct Answer: D

#### Rationale

Choice D is correct. The volume,  $V$ , of a sphere is given by  $V = \frac{4}{3}\pi r^3$ , where  $r$  is the radius of the sphere. Since a hemisphere is half of a sphere, it follows that the volume,  $V$ , of a hemisphere is given by  $V = \left(\frac{1}{2}\right)\left(\frac{4}{3}\right)\pi r^3$ , or  $V = \frac{2}{3}\pi r^3$ . Substituting **27** for  $r$  in this formula yields  $V = \frac{2}{3}\pi(27)^3$ , which gives  $V = 13,122\pi$ , or  $V$  is approximately equal to **41,223.98**. Therefore, the choice that is closest to the volume, in cubic inches, of this hemisphere is **41,200**.

Choice A is incorrect and may result from conceptual or calculation errors.

Choice B is incorrect and may result from conceptual or calculation errors.

Choice C is incorrect and may result from conceptual or calculation errors.

Question Difficulty: Hard

## Question ID 71ed94a7

| Assessment | Test | Domain                    | Skill           | Difficulty |
|------------|------|---------------------------|-----------------|------------|
| PSAT 8/9   | Math | Geometry and Trigonometry | Area and volume | Hard       |

ID: 71ed94a7

A circle has a radius of **2.1** inches. The area of the circle is  $b\pi$  square inches, where  $b$  is a constant. What is the value of  $b$ ?

ID: 71ed94a7 Answer

Correct Answer: 4.41, 441/100

Rationale

The correct answer is **4.41**. The area,  $A$ , of a circle is given by the formula  $A = \pi r^2$ , where  $r$  is the radius of the circle. It's given that the area of the circle is  $b\pi$  square inches, where  $b$  is a constant, and the radius of the circle is **2.1** inches. Substituting  $b\pi$  for  $A$  and **2.1** for  $r$  in the formula  $A = \pi r^2$  yields  $b\pi = \pi(2.1^2)$ . Dividing both sides of this equation by  $\pi$  yields  $b = 4.41$ . Therefore, the value of  $b$  is **4.41**.

Question Difficulty: Hard

## Question ID 5d57a9d5

| Assessment | Test | Domain                    | Skill           | Difficulty |
|------------|------|---------------------------|-----------------|------------|
| PSAT 8/9   | Math | Geometry and Trigonometry | Area and volume | Hard       |

**ID: 5d57a9d5**

A right circular cone has a height of **22 centimeters (cm)** and a base with a diameter of **6 cm**. The volume of this cone is  $n\pi \text{ cm}^3$ . What is the value of  $n$ ?

**ID: 5d57a9d5 Answer**

Correct Answer: 66

Rationale

The correct answer is **66**. It's given that the right circular cone has a height of **22 centimeters (cm)** and a base with a diameter of **6 cm**. Since the diameter of the base of the cone is **6 cm**, the radius of the base is **3 cm**. The volume  $V$ , **in cm<sup>3</sup>**, of a right circular cone can be found using the formula  $V = \frac{1}{3}\pi r^2 h$ , where  $h$  is the height, **in cm**, and  $r$  is the radius, **in cm**, of the base of the cone. Substituting **22** for  $h$  and **3** for  $r$  in this formula yields  $V = \frac{1}{3}\pi(3)^2(22)$ , or  $V = 66\pi$ . Therefore, the volume of the cone is  **$66\pi \text{ cm}^3$** . It's given that the volume of the cone is  $n\pi \text{ cm}^3$ . Therefore, the value of  $n$  is **66**.

Question Difficulty: Hard

## Question ID 2476696b

| Assessment | Test | Domain                    | Skill           | Difficulty |
|------------|------|---------------------------|-----------------|------------|
| PSAT 8/9   | Math | Geometry and Trigonometry | Area and volume | Hard       |

ID: 2476696b

A triangular prism has a height of **8 centimeters (cm)** and a volume of **216 cm<sup>3</sup>**. What is the area, **in cm<sup>2</sup>**, of the base of the prism? (The volume of a triangular prism is equal to  $Bh$ , where  $B$  is the area of the base and  $h$  is the height of the prism.)

ID: 2476696b Answer

Correct Answer: 27

Rationale

The correct answer is **27**. It's given that a triangular prism has a volume of **216 cubic centimeters (cm<sup>3</sup>)** and the volume of a triangular prism is equal to  $Bh$ , where  $B$  is the area of the base and  $h$  is the height of the prism. Therefore,  $216 = Bh$ . It's also given that the triangular prism has a height of **8 cm**. Therefore,  $h = 8$ . Substituting **8** for  $h$  in the equation  $216 = Bh$  yields  $216 = B(8)$ . Dividing both sides of this equation by **8** yields  $27 = B$ . Therefore, the area, **in cm<sup>2</sup>**, of the base of the prism is **27**.

Question Difficulty: Hard

# Question ID 8ea086cc

| Assessment | Test | Domain                    | Skill           | Difficulty |
|------------|------|---------------------------|-----------------|------------|
| PSAT 8/9   | Math | Geometry and Trigonometry | Area and volume | Hard       |

**ID: 8ea086cc**

A right square prism has a height of **14** units. The volume of the prism is **2,016** cubic units. What is the length, in units, of an edge of the base?

**ID: 8ea086cc Answer**

Correct Answer: 12

Rationale

The correct answer is **12**. The volume,  $V$ , of a right square prism can be calculated using the formula  $V = s^2h$ , where  $s$  represents the length of an edge of the base and  $h$  represents the height of the prism. It's given that the volume of the prism is **2,016** cubic units and the height is **14** units. Substituting **2,016** for  $V$  and **14** for  $h$  in the formula  $V = s^2h$  yields  $2,016 = (s^2)(14)$ . Dividing both sides of this equation by **14** yields  $144 = s^2$ . Taking the square root of both sides of this equation yields two solutions:  $-12 = s$  and  $12 = s$ . The length can't be negative, so  $12 = s$ . Therefore, the length, in units, of an edge of the base is **12**.

Question Difficulty: Hard

# Question ID 129bc31d

| Assessment | Test | Domain                    | Skill           | Difficulty |
|------------|------|---------------------------|-----------------|------------|
| PSAT 8/9   | Math | Geometry and Trigonometry | Area and volume | Hard       |

## ID: 129bc31d

The length of each side of a square is **94** centimeters (cm). Which expression gives the area, in **cm<sup>2</sup>**, of the square?

- A. **2 · 94**
- B. **2 · 94 · 94**
- C. **4 · 94**
- D. **94 · 94**

## ID: 129bc31d Answer

Correct Answer: D

### Rationale

Choice D is correct. The area of a square is given by  $s^2$ , where  $s$  is the length of each side of the square. It's given that the length of each side of a square is **94 cm**. It follows that the area, in **cm<sup>2</sup>**, of the square is  $(94)^2$ , or **94 · 94**. Therefore, the expression that gives the area, in **cm<sup>2</sup>**, of the square is **94 · 94**.

Choice A is incorrect and may result from conceptual errors.

Choice B is incorrect and may result from conceptual errors.

Choice C is incorrect. This expression gives the perimeter, in **cm**, of the square.

Question Difficulty: Hard

# Question ID 6b1df07d

| Assessment | Test | Domain                    | Skill           | Difficulty |
|------------|------|---------------------------|-----------------|------------|
| PSAT 8/9   | Math | Geometry and Trigonometry | Area and volume | Hard       |

## ID: 6b1df07d

The length of the edge of the base of a right square prism is **6** units. The volume of the prism is **2,880** cubic units. What is the height, in units, of the prism?

A.  $4\sqrt{30}$

B. **36**

C.  $24\sqrt{5}$

D. **80**

## ID: 6b1df07d Answer

Correct Answer: D

### Rationale

Choice D is correct. The volume,  $V$ , of a right square prism is given by the formula  $V = s^2h$ , where  $s$  represents the length of the edge of the base and  $h$  represents the height of the prism. It's given that the volume of a right square prism is **2,880** cubic units and the length of the edge of the base is **6** units. Substituting **2,880** for  $V$  and **6** for  $s$  in the formula  $V = s^2h$  yields  $2,880 = (6^2)h$ , or  $2,880 = 36h$ . Dividing both sides of this equation by **36** yields  $80 = h$ . Therefore, the height, in units, of the prism is **80**.

Choice A is incorrect. This is the height, in units, of a right square prism where the length of the edge of the base is **6** units and the volume of the prism is  $144\sqrt{30}$ , not **2,880**, units.

Choice B is incorrect. This is the area, in square units, of the base, not the height, in units, of the prism.

Choice C is incorrect. This is the height, in units, of a right square prism where the length of the edge of the base is **6** units and the volume of the prism is  $864\sqrt{5}$ , not **2,880**, units.

Question Difficulty: Hard

# Question ID ddcae495

| Assessment | Test | Domain                    | Skill           | Difficulty |
|------------|------|---------------------------|-----------------|------------|
| PSAT 8/9   | Math | Geometry and Trigonometry | Area and volume | Hard       |

ID: ddcae495

The table gives the perimeters of similar triangles  $TUV$  and  $XYZ$ , where  $\overline{TU}$  corresponds to  $\overline{XY}$ . The length of  $\overline{TU}$  is 18.

|                | Perimeter |
|----------------|-----------|
| Triangle $TUV$ | 37        |
| Triangle $XYZ$ | 333       |

What is the length of  $\overline{XY}$ ?

- A. 2
- B. 18
- C. 55
- D. 162

ID: ddcae495 Answer

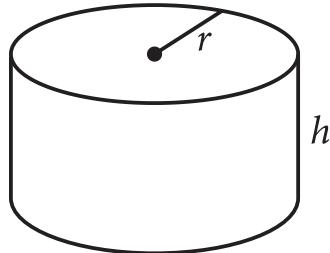
Correct Answer: D

Rationale

Choice D is correct. It's given that triangle  $XYZ$  is similar to triangle  $TUV$ . Therefore, each side of triangle  $XYZ$  is  $k$  times its corresponding side of triangle  $TUV$ , where  $k$  is a constant. It follows that the perimeter of triangle  $XYZ$  is  $k$  times the perimeter of triangle  $TUV$ . It's also given that  $\overline{TU}$  corresponds to  $\overline{XY}$  and the length of  $\overline{TU}$  is 18. Let  $x$  represent the length of  $\overline{XY}$ . It follows that  $x = 18k$ . The table shows that the perimeters of triangles  $TUV$  and  $XYZ$  are 37 and 333, respectively. It follows that  $333 = 37k$ , or  $9 = k$ . Substituting 9 for  $k$  in the equation  $x = 18k$  yields  $x = (18)(9)$ , or  $x = 162$ . Therefore, the length of  $\overline{XY}$  is 162.

Choice A is incorrect and may result from conceptual or calculation errors.

Choice B is incorrect. This is the length of  $\overline{TU}$ , not the length of  $\overline{XY}$ .


Choice C is incorrect and may result from conceptual or calculation errors.

Question Difficulty: Hard

# Question ID 03945175

| Assessment | Test | Domain                    | Skill           | Difficulty |
|------------|------|---------------------------|-----------------|------------|
| PSAT 8/9   | Math | Geometry and Trigonometry | Area and volume | Hard       |

ID: 03945175



The figure shown is a right circular cylinder with a radius of  $r$  and height of  $h$ . A second right circular cylinder (not shown) has a volume that is 392 times as large as the volume of the cylinder shown. Which of the following could represent the radius  $R$ , in terms of  $r$ , and the height  $H$ , in terms of  $h$ , of the second cylinder?

- A.  $R = 8r$  and  $H = 7h$
- B.  $R = 8r$  and  $H = 49h$
- C.  $R = 7r$  and  $H = 8h$
- D.  $R = 49r$  and  $H = 8h$

ID: 03945175 Answer

Correct Answer: C

Rationale

Choice C is correct. The volume of a right circular cylinder is equal to  $\pi a^2 b$ , where  $a$  is the radius of a base of the cylinder and  $b$  is the height of the cylinder. It's given that the cylinder shown has a radius of  $r$  and a height of  $h$ . It follows that the volume of the cylinder shown is equal to  $\pi r^2 h$ . It's given that the second right circular cylinder has a radius of  $R$  and a height of  $H$ . It follows that the volume of the second cylinder is equal to  $\pi R^2 H$ . Choice C gives  $R = 7r$  and  $H = 8h$ . Substituting  $7r$  for  $R$  and  $8h$  for  $H$  in the expression that represents the volume of the second cylinder yields  $\pi(7r)^2(8h)$ , or  $\pi(49r^2)(8h)$ , which is equivalent to  $\pi(392r^2h)$ , or 392( $\pi r^2 h$ ). This expression is equal to 392 times the volume of the cylinder shown,  $\pi r^2 h$ . Therefore,  $R = 7r$  and  $H = 8h$  could represent the radius  $R$ , in terms of  $r$ , and the height  $H$ , in terms of  $h$ , of the second cylinder.

Choice A is incorrect. Substituting  $8r$  for  $R$  and  $7h$  for  $H$  in the expression that represents the volume of the second cylinder yields  $\pi(8r)^2(7h)$ , or  $\pi(64r^2)(7h)$ , which is equivalent to  $\pi(448r^2h)$ , or 448( $\pi r^2 h$ ). This expression is equal to 448, not 392, times the volume of the cylinder shown.

Choice B is incorrect. Substituting  $8r$  for  $R$  and  $49h$  for  $H$  in the expression that represents the volume of the second cylinder yields  $\pi(8r)^2(49h)$ , or  $\pi(64r^2)(49h)$ , which is equivalent to  $\pi(3,136r^2h)$ , or 3,136( $\pi r^2 h$ ). This expression is equal to 3,136, not 392, times the volume of the cylinder shown.

Choice D is incorrect. Substituting  $49r$  for  $R$  and  $8h$  for  $H$  in the expression that represents the volume of the second cylinder yields  $\pi(49r)^2(8h)$ , or  $\pi(2,401r^2)(8h)$ , which is equivalent to  $\pi(19,208r^2h)$ , or 19,208( $\pi r^2 h$ ). This expression is equal to 19,208, not 392, times the volume of the cylinder shown.

Question Difficulty: Hard

# Question ID 470c3f70

| Assessment | Test | Domain                    | Skill           | Difficulty |
|------------|------|---------------------------|-----------------|------------|
| PSAT 8/9   | Math | Geometry and Trigonometry | Area and volume | Hard       |

**ID: 470c3f70**

A cube has an edge length of **41** inches. What is the volume, in cubic inches, of the cube?

- A. **164**
- B. **1,681**
- C. **10,086**
- D. **68,921**

**ID: 470c3f70 Answer**

Correct Answer: D

Rationale

Choice D is correct. The volume,  $V$ , of a cube can be found using the formula  $V = s^3$ , where  $s$  is the edge length of the cube. It's given that a cube has an edge length of **41** inches. Substituting **41** inches for  $s$  in this equation yields  $V = 41^3$  cubic inches, or **68,921** cubic inches. Therefore, the volume of the cube is **68,921** cubic inches.

Choice A is incorrect. This is the perimeter, in inches, of the cube.

Choice B is incorrect. This is the area, in square inches, of a face of the cube.

Choice C is incorrect. This is the surface area, in square inches, of the cube.

Question Difficulty: Hard

# Question ID ec78b38e

| Assessment | Test | Domain                    | Skill           | Difficulty |
|------------|------|---------------------------|-----------------|------------|
| PSAT 8/9   | Math | Geometry and Trigonometry | Area and volume | Hard       |

## ID: ec78b38e

A cube has an edge length of **68** inches. A solid sphere with a radius of **34** inches is inside the cube, such that the sphere touches the center of each face of the cube. To the nearest cubic inch, what is the volume of the space in the cube not taken up by the sphere?

- A. **149,796**
- B. **164,500**
- C. **190,955**
- D. **310,800**

## ID: ec78b38e Answer

Correct Answer: A

### Rationale

Choice A is correct. The volume of a cube can be found by using the formula  $V = s^3$ , where  $V$  is the volume and  $s$  is the edge length of the cube. Therefore, the volume of the given cube is  $V = 68^3$ , or **314,432** cubic inches. The volume of a sphere can be found by using the formula  $V = \frac{4}{3}\pi r^3$ , where  $V$  is the volume and  $r$  is the radius of the sphere.

Therefore, the volume of the given sphere is  $V = \frac{4}{3}\pi(34)^3$ , or approximately **164,636** cubic inches. The volume of the space in the cube not taken up by the sphere is the difference between the volume of the cube and volume of the sphere. Subtracting the approximate volume of the sphere from the volume of the cube gives  $314,432 - 164,636 = 149,796$  cubic inches.

Choice B is incorrect and may result from conceptual or calculation errors.

Choice C is incorrect and may result from conceptual or calculation errors.

Choice D is incorrect and may result from conceptual or calculation errors.

Question Difficulty: Hard

# Question ID d5620692

| Assessment | Test | Domain                    | Skill           | Difficulty |
|------------|------|---------------------------|-----------------|------------|
| PSAT 8/9   | Math | Geometry and Trigonometry | Area and volume | Hard       |

ID: d5620692

Triangles  $ABC$  and  $DEF$  are similar. Each side length of triangle  $ABC$  is 4 times the corresponding side length of triangle  $DEF$ . The area of triangle  $ABC$  is 270 square inches. What is the area, in square inches, of triangle  $DEF$ ?

ID: d5620692 Answer

Correct Answer:  $135/8$ , 16.87, 16.88

Rationale

The correct answer is  $\frac{135}{8}$ . It's given that triangles  $ABC$  and  $DEF$  are similar and each side length of triangle  $ABC$  is 4 times the corresponding side length of triangle  $DEF$ . For two similar triangles, if each side length of the first triangle is  $k$  times the corresponding side length of the second triangle, then the area of the first triangle is  $k^2$  times the area of the second triangle. Therefore, the area of triangle  $ABC$  is  $4^2$ , or 16, times the area of triangle  $DEF$ . It's given that the area of triangle  $ABC$  is 270 square inches. Let  $a$  represent the area, in square inches, of triangle  $DEF$ . It follows that 270 is 16 times  $a$ , or  $270 = 16a$ . Dividing both sides of this equation by 16 yields  $\frac{270}{16} = a$ , which is equivalent to  $\frac{135}{8} = a$ . Thus, the area, in square inches, of triangle  $DEF$  is  $\frac{135}{8}$ . Note that  $135/8$ , 16.87, and 16.88 are examples of ways to enter a correct answer.

Question Difficulty: Hard

## Question ID 80a8c7f7

| Assessment | Test | Domain                    | Skill           | Difficulty |
|------------|------|---------------------------|-----------------|------------|
| PSAT 8/9   | Math | Geometry and Trigonometry | Area and volume | Hard       |

ID: 80a8c7f7

Square X has a side length of **12** centimeters. The perimeter of square Y is **2** times the perimeter of square X. What is the length, in centimeters, of one side of square Y?

- A. **6**
- B. **10**
- C. **14**
- D. **24**

ID: 80a8c7f7 Answer

Correct Answer: D

Rationale

Choice D is correct. The perimeter,  $P$ , of a square can be found using the formula  $P = 4s$ , where  $s$  is the length of each side of the square. It's given that square X has a side length of **12** centimeters. Substituting **12** for  $s$  in the formula for the perimeter of a square yields  $P = 4(12)$ , or  $P = 48$ . Therefore, the perimeter of square X is **48** centimeters. It's also given that the perimeter of square Y is **2** times the perimeter of square X. Therefore, the perimeter of square Y is **2(48)**, or **96**, centimeters. Substituting **96** for  $P$  in the formula  $P = 4s$  gives  $96 = 4s$ . Dividing both sides of this equation by **4** gives  $24 = s$ . Therefore, the length of one side of square Y is **24** centimeters.

Choice A is incorrect and may result from conceptual or calculation errors.

Choice B is incorrect and may result from conceptual or calculation errors.

Choice C is incorrect and may result from conceptual or calculation errors.

Question Difficulty: Hard

# Question ID beaa3b50

| Assessment | Test | Domain                    | Skill           | Difficulty |
|------------|------|---------------------------|-----------------|------------|
| PSAT 8/9   | Math | Geometry and Trigonometry | Area and volume | Hard       |

**ID: beaa3b50**

A circle has a circumference of  $31\pi$  centimeters. What is the diameter, in centimeters, of the circle?

**ID: beaa3b50 Answer**

Correct Answer: 31

Rationale

The correct answer is **31**. The circumference of a circle is equal to  $2\pi r$  centimeters, where  $r$  represents the radius, in centimeters, of the circle, and the diameter of the circle is equal to  $2r$  centimeters. It's given that a circle has a circumference of  $31\pi$  centimeters. Therefore,  $31\pi = 2\pi r$ . Dividing both sides of this equation by  $\pi$  yields  $31 = 2r$ . Since the diameter of the circle is equal to  $2r$  centimeters, it follows that the diameter, in centimeters, of the circle is **31**.

Question Difficulty: Hard

# Question ID 2d4c71c6

| Assessment | Test | Domain                    | Skill           | Difficulty |
|------------|------|---------------------------|-----------------|------------|
| PSAT 8/9   | Math | Geometry and Trigonometry | Area and volume | Hard       |

## ID: 2d4c71c6

Right rectangular prism X is similar to right rectangular prism Y. The surface area of right rectangular prism X is **58 square centimeters (cm<sup>2</sup>)**, and the surface area of right rectangular prism Y is **1,450 cm<sup>2</sup>**. The volume of right rectangular prism Y is **1,250 cubic centimeters (cm<sup>3</sup>)**. What is the sum of the volumes, **in cm<sup>3</sup>**, of right rectangular prism X and right rectangular prism Y?

## ID: 2d4c71c6 Answer

Correct Answer: 1260

### Rationale

The correct answer is **1,260**. Since it's given that prisms X and Y are similar, all the linear measurements of prism Y are  $k$  times the respective linear measurements of prism X, where  $k$  is a positive constant. Therefore, the surface area of prism Y is  $k^2$  times the surface area of prism X and the volume of prism Y is  $k^3$  times the volume of prism X. It's given that the surface area of prism Y is **1,450 cm<sup>2</sup>**, and the surface area of prism X is **58 cm<sup>2</sup>**, which implies that  $1,450 = 58k^2$ . Dividing both sides of this equation by 58 yields  $\frac{1,450}{58} = k^2$ , or  $k^2 = 25$ . Since  $k$  is a positive constant,  $k = 5$ . It's given that the volume of prism Y is **1,250 cm<sup>3</sup>**. Therefore, the volume of prism X is equal to  $\frac{1,250}{k^3}$  cm<sup>3</sup>, which is equivalent to  $\frac{1,250}{5^3}$  cm<sup>3</sup>, or **10 cm<sup>3</sup>**. Thus, the sum of the volumes, in cm<sup>3</sup>, of the two prisms is **1,250 + 10**, or **1,260**.

Question Difficulty: Hard

# Question ID 799f5245

| Assessment | Test | Domain                    | Skill           | Difficulty |
|------------|------|---------------------------|-----------------|------------|
| PSAT 8/9   | Math | Geometry and Trigonometry | Area and volume | Hard       |

**ID: 799f5245**

A right triangle has sides of length  $2\sqrt{2}$ ,  $6\sqrt{2}$ , and  $\sqrt{80}$  units. What is the area of the triangle, in square units?

- A.  $8\sqrt{2} + \sqrt{80}$
- B. 12
- C.  $24\sqrt{80}$
- D. 24

**ID: 799f5245 Answer**

Correct Answer: B

Rationale

Choice B is correct. The area,  $A$ , of a triangle can be found using the formula  $A = \frac{1}{2}bh$ , where  $b$  is the length of the base of the triangle and  $h$  is the height of the triangle. It's given that the triangle is a right triangle. Therefore, its base and height can be represented by the two legs. It's also given that the triangle has sides of length  $2\sqrt{2}$ ,  $6\sqrt{2}$ , and  $\sqrt{80}$  units. Since  $\sqrt{80}$  units is the greatest of these lengths, it's the length of the hypotenuse. Therefore, the two legs have lengths  $2\sqrt{2}$  and  $6\sqrt{2}$  units. Substituting these values for  $b$  and  $h$  in the formula  $A = \frac{1}{2}bh$  gives  $A = \frac{1}{2}(2\sqrt{2})(6\sqrt{2})$ , which is equivalent to  $A = 6\sqrt{4}$  square units, or  $A = 12$  square units.

Choice A is incorrect. This expression represents the perimeter, rather than the area, of the triangle.

Choice C is incorrect and may result from conceptual or calculation errors.

Choice D is incorrect and may result from conceptual or calculation errors.

Question Difficulty: Hard