
Question ID f6809431

Assessment	Test	Domain	Skill	Difficulty
PSAT 8/9	Math	Algebra	Linear inequalities in one or two variables	Hard

ID: f6809431

The shaded region shown represents the solutions to which inequality?

A.
$$y < -1 + 3x$$

B.
$$y < -1 - 3x$$

C.
$$y > -1 + 3x$$

D.
$$y > -1 - 3x$$

ID: f6809431 Answer

Correct Answer: D

Rationale

Choice D is correct. The equation for the line representing the boundary of the shaded region can be written in slope-intercept form y=b+mx, where m is the slope and (0,b) is the y-intercept of the line. For the graph shown, the boundary line passes through the points (0,-1) and (1,-4). Given two points on a line, (x_1,y_1) and (x_2,y_2) , the slope of the line can be calculated using the equation $m=\frac{y_2-y_1}{x_2-x_1}$. Substituting the points (0,-1) and (1,-4) for (x_1,y_1) and (x_2,y_2) in this equation yields $m=\frac{-4-(-1)}{1-0}$, which is equivalent to $m=\frac{-3}{1}$, or m=-3. Since the point (0,-1) represents the y-intercept, it follows that b=-1. Substituting -3 for m and -1 for b in the equation y=b+mx yields y=-1-3x as the equation of the boundary line. Since the shaded region represents all the points above this boundary line, it follows that the shaded region shown represents the solutions to the inequality y>-1-3x.

Choice A is incorrect. This inequality represents a region below, not above, a boundary line with a slope of 3, not -3.

Choice B is incorrect. This inequality represents a region below, not above, the boundary line shown.

Choice C is incorrect. This inequality represents a region whose boundary line has a slope of 3, not -3.

Question ID 153dbaa0

Assessment	Test	Domain	Skill	Difficulty
PSAT 8/9	Math	Algebra	Linear inequalities in one or two variables	Hard

ID: 153dbaa0

A city employee will plant two types of bushes, azaleas and boxwoods, in a park. There will be no more than 164 total bushes planted, and the number of azaleas planted will be at most three times the number of boxwoods planted. Which of the following systems of inequalities best represents this situation, where a is the number of azaleas that will be planted, and b is the number of boxwoods that will be planted?

A.
$$a+b \geq 164$$

 $3a > b$

B.
$$a+b \geq 164$$
 $a \leq 3b$

C.
$$a+b \leq 164$$
 $3a \geq b$

D.
$$a+b \leq 164$$
 $a < 3b$

ID: 153dbaa0 Answer

Correct Answer: D

Rationale

Choice D is correct. It's given that a city employee will plant azaleas and boxwoods in a park, where a is the number of azaleas that will be planted and b is the number of boxwoods that will be planted. It's also given that there will be no more than 164 total bushes planted, which can be represented by the inequality $a+b \leq 164$. It's also given that the number of azaleas planted will be at most three times the number of boxwoods planted, which can be represented by the inequality $a \leq 3b$. Therefore, the system of inequalities containing $a+b \leq 164$ and $a \leq 3b$ best represents this situation.

Choice A is incorrect. The inequality $a+b \geq 164$ represents a situation where at least 164 total bushes will be planted, not that there will be no more than 164 total bushes planted. Also, the inequality $3a \geq b$ represents a situation where the number of boxwoods that will be planted is at most three times the number of azaleas that will be planted, not that the number of azaleas planted will be at most three times the number of boxwoods planted.

Choice B is incorrect. The inequality $a+b \ge 164$ represents a situation where at least 164 total bushes will be planted, not that there will be no more than 164 total bushes planted.

Choice C is incorrect. The inequality $3a \ge b$ represents a situation where the number of boxwoods that will be planted is at most three times the number of azaleas that will be planted, not that the number of azaleas planted will be at most three times the number of boxwoods planted.

Question ID 90381488

Assessment	Test	Domain	Skill	Difficulty
PSAT 8/9	Math	Algebra	Linear inequalities in one or two variables	Hard

ID: 90381488

$11x + 14y \le 115$

Anthony will spend at most \$115 to purchase x small cheese pizzas and y large cheese pizzas for a team dinner. The given inequality represents this situation. Which of the following is the best interpretation of 14y in this context?

- A. The amount, in dollars, Anthony will spend on each large cheese pizza
- B. The amount, in dollars, Anthony will spend on each small cheese pizza
- C. The total amount, in dollars, Anthony will spend on large cheese pizzas
- D. The total amount, in dollars, Anthony will spend on small cheese pizzas

ID: 90381488 Answer

Correct Answer: C

Rationale

Choice C is correct. It's given that Anthony will spend at most \$115 to purchase x small cheese pizzas and y large cheese pizzas. In the inequality $11x + 14y \le 115$, y represents the number of large cheese pizzas that Anthony will purchase. This means the coefficient 14 represents the amount, in dollars, Anthony will spend on each large cheese pizza. Therefore, the best interpretation of 14y in this context is the total amount, in dollars, Anthony will spend on large cheese pizzas.

Choice A is incorrect. This is the best interpretation of 14, not 14y.

Choice B is incorrect. This is the best interpretation of 11, not 14y.

Choice D is incorrect. This is the best interpretation of 11x, not 14y.

Question ID 58740e7b

Assessment	Test	Domain	Skill	Difficulty
PSAT 8/9	Math	Algebra	Linear inequalities in one or two variables	Hard

ID: 58740e7b

A salesperson's total earnings consist of a base salary of x dollars per year, plus commission earnings of 11% of the total sales the salesperson makes during the year. This year, the salesperson has a goal for the total earnings to be at least 3 times and at most 4 times the base salary. Which of the following inequalities represents all possible values of total sales s, in dollars, the salesperson can make this year in order to meet that goal?

- A. $2x \leq s \leq 3x$
- B. $\frac{2}{0.11}x \leq s \leq \frac{3}{0.11}x$
- C. $3x \leq s \leq 4x$
- D. $\frac{3}{0.11}x \leq s \leq \frac{4}{0.11}x$

ID: 58740e7b Answer

Correct Answer: B

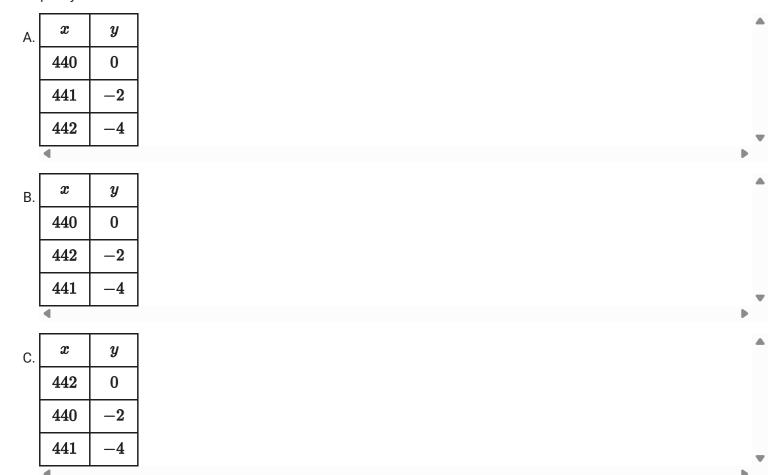
Rationale

Choice B is correct. It's given that a salesperson's total earnings consist of a base salary of x dollars per year plus commission earnings of 11% of the total sales the salesperson makes during the year. If the salesperson makes s dollars in total sales this year, the salesperson's total earnings can be represented by the expression x+0.11s. It's also given that the salesperson has a goal for the total earnings to be at least s times and at most s times the base salary, which can be represented by the expressions s and s and

Choice A is incorrect. This inequality represents a situation in which the total sales, rather than the total earnings, are at least 2 times and at most 3 times, rather than at least 3 times and at most 4 times, the base salary.

Choice C is incorrect. This inequality represents a situation in which the total sales, rather than the total earnings, are at least 3 times and at most 4 times the base salary.

Choice D is incorrect. This inequality represents a situation in which the total earnings are at least $\bf 4$ times and at most $\bf 5$ times, rather than at least $\bf 3$ times and at most $\bf 4$ times, the base salary.


Question ID 31cb1ec6

Assessment	Test	Domain	Skill	Difficulty
PSAT 8/9	Math	Algebra	Linear inequalities in one or two variables	Hard

ID: 31cb1ec6

$$2x - y > 883$$

For which of the following tables are all the values of x and their corresponding values of y solutions to the given inequality?

D.	\boldsymbol{x}	y
	442	0
	441	-2
	440	-4
	4	

ID: 31cb1ec6 Answer

Correct Answer: D

Rationale

Choice D is correct. All the tables in the choices have the same three values of x, 440, 441, and 442, so each of the three values of x can be substituted in the given inequality to compare the corresponding values of y in each of the tables.

Substituting 440 for x in the given inequality yields 2(440) - y > 883, or 880 - y > 883. Subtracting 880 from both sides of this inequality yields -y > 3. Dividing both sides of this inequality by -1 yields y < -3. Therefore, when x = 440, the corresponding value of y must be less than -3. Substituting 441 for x in the given inequality yields 2(441) - y > 883, or 882 - y > 883. Subtracting 882 from both sides of this inequality yields -y > 1. Dividing both sides of this inequality by -1 yields y < -1. Therefore, when x = 441, the corresponding value of y must be less than -1. Substituting 442 for x in the given inequality yields 2(442) - y > 883, or 884 - y > 883. Subtracting 884 from both sides of this inequality yields -y > -1. Dividing both sides of this inequality by -1 yields y < 1. Therefore, when x = 442, the corresponding value of y must be less than 1. For the table in choice D, when x = 440, the corresponding value of y is -4, which is less than -3; when x = 441, the corresponding value of y is -2, which is less than -1; when x = 442, the corresponding value of y is 0, which is less than 1. Therefore, the table in choice D gives values of x and their corresponding values of x = 1 that are all solutions to the given inequality.

Choice A is incorrect. When x = 440, the corresponding value of y in this table is 0, which isn't less than -3.

Choice B is incorrect. When x = 440, the corresponding value of y in this table is 0, which isn't less than -3.

Choice C is incorrect. When x = 440, the corresponding value of y in this table is -2, which isn't less than -3.

Question ID ede444e6

Assessment	Test	Domain	Skill	Difficulty
PSAT 8/9	Math	Algebra	Linear inequalities in one or two variables	Hard

ID: ede444e6

The minimum value of x is 12 less than 6 times another number n. Which inequality shows the possible values of x?

- A. $x \leq 6n-12$
- B. $x \geq 6n-12$
- C. $x \leq 12-6n$
- D. $x \geq 12-6n$

ID: ede444e6 Answer

Correct Answer: B

Rationale

Choice B is correct. It's given that the minimum value of x is 12 less than 6 times another number n. Therefore, the possible values of x are all greater than or equal to the value of 12 less than 6 times n. The value of 6 times n is given by the expression 6n. The value of 12 less than 12 les

Choice A is incorrect. This inequality shows the possible values of x if the maximum, not the minimum, value of x is x less than x times x.

Choice C is incorrect. This inequality shows the possible values of x if the maximum, not the minimum, value of x is 6 times n less than n less t

Choice D is incorrect. This inequality shows the possible values of x if the minimum value of x is 6 times n less than 12, not 12 less than 6 times n.

Question ID 2150c15c

Assessment	Test	Domain	Skill	Difficulty	
PSAT 8/9	Math	Algebra	Linear inequalities in one or two variables	Hard	

ID: 2150c15c

A business owner plans to purchase the same model of chair for each of the 81 employees. The total budget to spend on these chairs is \$14,000, which includes a 7% sales tax. Which of the following is closest to the maximum possible price per chair, before sales tax, the business owner could pay based on this budget?

- A. \$148.15
- B. \$161.53
- C. \$172.84
- D. \$184.94

ID: 2150c15c Answer

Correct Answer: B

Rationale

Choice B is correct. It's given that a business owner plans to purchase 81 chairs. If p is the price per chair, the total price of purchasing 81 chairs is 81p. It's also given that 7% sales tax is included, which is equivalent to 81p multiplied by 1.07, or 81(1.07)p. Since the total budget is \$14,000, the inequality representing the situation is given by $81(1.07)p \le 14,000$. Dividing both sides of this inequality by 81(1.07) and rounding the result to two decimal places gives $p \le 161.53$. To not exceed the budget, the maximum possible price per chair is \$161.53.

Choice A is incorrect and may result from conceptual or calculation errors.

Choice C is incorrect. This is the maximum possible price per chair including sales tax, not the maximum possible price per chair before sales tax.

Choice D is incorrect. This is the maximum possible price if the sales tax is added to the total budget, not the maximum possible price per chair before sales tax.

Question ID 9020873d

Assessment	Test	Domain	Skill	Difficulty
PSAT 8/9	Math	Algebra	Linear inequalities in one or two variables	Hard

ID: 9020873d

In a set of four consecutive odd integers, where the integers are ordered from least to greatest, the first integer is represented by x. The product of 12 and the fourth odd integer is at most 26 less than the sum of the first and third odd integers. Which inequality represents this situation?

A.
$$12(x+6) \le x + (x+4) - 26$$

B.
$$12(x+6) \ge 26 - (x+(x+4))$$

C.
$$12(x+4) \le x + (x+3) - 26$$

D.
$$12(x+4) \ge 26 - (x+(x+3))$$

ID: 9020873d Answer

Correct Answer: A

Rationale

Choice A is correct. It's given that the four odd integers are consecutive, ordered from least to greatest, and that the first odd integer is represented by x. It follows that the second odd integer is represented by x + 2, the third odd integer is represented by x + 4, and the fourth odd integer is represented by x + 6. Therefore, the product of x + 12 and the fourth odd integer is represented by x + 12. Since the product of x + 12 and the fourth odd integer is at most x + 12 less than the sum of the first and third odd integers, it follows that x + 12 and the fourth odd integer is at most x + 12 less than the sum of the first and third odd integers, it follows that x + 12 and the fourth odd integer is at most x + 12 less than the sum of the first and third odd integers, it follows that x + 12 and x + 12 and the fourth odd integer is at most x + 12 less than the sum of the first and third odd integers, it follows that x + 12 and x + 12 and x + 12 and the fourth odd integer is at most x + 12 less than the sum of the first and third odd integers, it follows that x + 12 and x + 12 and x + 12 and the fourth odd integer is at most x + 12 less than the sum of the first and third odd integers, it follows that x + 12 and x + 12

Choice B is incorrect and may result from conceptual or calculation errors.

Choice C is incorrect and may result from conceptual or calculation errors.

Choice D is incorrect and may result from conceptual or calculation errors.

Question ID 3921f7b2

Assessment	Test	Domain	Skill	Difficulty
PSAT 8/9	Math	Algebra	Linear inequalities in one or two variables	Hard

ID: 3921f7b2

A particular botanist classifies a species of plant as tall if its typical height when fully grown is more than 100 centimeters. Each of the following inequalities represents the possible heights h, in centimeters, for a specific plant species when fully grown. Which inequality represents the possible heights h, in centimeters, for a tall plant species?

- A. 106 < h < 158
- B. 80 < h < 100
- C. 42 < h < 87
- D. 17 < h < 85

ID: 3921f7b2 Answer

Correct Answer: A

Rationale

Choice A is correct. It's given that a particular botanist classifies a species of plant as tall if its typical height when fully grown is more than 100 centimeters. The inequality 106 < h < 158 represents possible heights h, in centimeters, for a plant species when fully grown where h is between 106 and 158 centimeters. Since all values of h in this inequality are greater than 100 centimeters, this inequality represents the possible heights for a tall plant species.

Choice B is incorrect. This inequality represents possible heights h, in centimeters, for a plant species when fully grown where h is between 80 and 100 centimeters, not more than 100 centimeters.

Choice C is incorrect. This inequality represents possible heights h, in centimeters, for a plant species when fully grown where h is between h and h centimeters, not more than h centimeters.

Choice D is incorrect. This inequality represents possible heights h, in centimeters, for a plant species when fully grown where h is between 17 and 85 centimeters, not more than 100 centimeters.

Question ID 8b53d350

Assessment	Test	Domain	Skill	Difficulty
PSAT 8/9	Math	Algebra	Linear inequalities in one or two variables	Hard

ID: 8b53d350

$$y > 4x + 8$$

For which of the following tables are all the values of x and their corresponding values of y solutions to the given inequality?

A.	$oldsymbol{x}$	y
	2	19
	4	30
	6	41
	4	

В.	$oldsymbol{x}$	$oldsymbol{y}$
	2	8
	4	16
	6	24

C.	$oldsymbol{x}$	\boldsymbol{y}
	2	13
	4	18
	6	23
	4	

D.	$oldsymbol{x}$	$oldsymbol{y}$
	2	13
	4	21
	6	29
	4	

ID: 8b53d350 Answer

Correct Answer: A

Rationale

Choice A is correct. In each choice, the values of x are 2, 4, and 6. Substituting the first value of x, 2, for x in the given inequality yields y > 4(2) + 8, or y > 16. Therefore, when x = 2, the corresponding value of y must be greater than x = 16.

. Of the given choices, only choice A is a table where the value of y corresponding to x=2 is greater than 16. To confirm that the other values of x in this table and their corresponding values of y are also solutions to the given inequality, the values of x and y in the table can be substituted for x and y in the given inequality. Substituting x for x and x in the given inequality yields x0 or x1 or x2, which is true. Substituting x3 for x4 and x4 for x5 in the given inequality yields x5 and x6 for x7 and x7 which is true. It follows that for choice A, all the values of x5 and their corresponding values of x6 are solutions to the given inequality.

Choice B is incorrect. Substituting 2 for x and 8 for y in the given inequality yields 8 > 4(2) + 8, or 8 > 16, which is false.

Choice C is incorrect. Substituting 2 for x and 13 for y in the given inequality yields 13 > 4(2) + 8, or 13 > 16, which is false.

Choice D is incorrect. Substituting 2 for x and 13 for y in the given inequality yields 13 > 4(2) + 8, or 13 > 16, which is false.

Question ID 76b636f2

Assessment	Test	Domain	Skill	Difficulty
PSAT 8/9	Math	Algebra	Linear inequalities in one or two variables	Hard

ID: 76b636f2

A number x is at most 17 less than 5 times the value of y. If the value of y is 3, what is the greatest possible value of x?

ID: 76b636f2 Answer

Correct Answer: -2

Rationale

The correct answer is -2. It's given that a number x is at most 17 less than 5 times the value of y, or $x \le 5y - 17$. Substituting 3 for y in this inequality yields $x \le 5(3) - 17$, or $x \le -2$. Thus, if the value of y is 3, the greatest possible value of x is -2.

Question ID c4afe86c

Assessment	Test	Domain	Skill	Difficulty
PSAT 8/9	Math	Algebra	Linear inequalities in one or two variables	Hard

ID: c4afe86c

A model estimates that whales from the genus *Eschrichtius* travel 72 to 77 miles in the ocean each day during their migration. Based on this model, which inequality represents the estimated total number of miles, x, a whale from the genus *Eschrichtius* could travel in 16 days of its migration?

A.
$$72 + 16 \le x \le 77 + 16$$

B.
$$(72)(16) \le x \le (77)(16)$$

C.
$$72 \le 16 + x \le 77$$

D.
$$72 \leq 16x \leq 77$$

ID: c4afe86c Answer

Correct Answer: B

Rationale

Choice B is correct. It's given that the model estimates that whales from the genus *Eschrichtius* travel 72 to 77 miles in the ocean each day during their migration. If one of these whales travels 72 miles each day for 16 days, then the whale travels 72(16) miles total. If one of these whales travels 77 miles each day for 16 days, then the whale travels 77(16) miles total. Therefore, the model estimates that in 16 days of its migration, a whale from the genus *Eschrichtius* could travel at least 72(16) and at most 77(16) miles total. Thus, the inequality $(72)(16) \le x \le (77)(16)$ represents the estimated total number of miles, x, a whale from the genus *Eschrichtius* could travel in 16 days of its migration.

Choice A is incorrect and may result from conceptual errors.

Choice C is incorrect and may result from conceptual errors.

Choice D is incorrect and may result from conceptual errors.

Question ID c5223e7a

Assessment	Test	Domain	Skill	Difficulty
PSAT 8/9	Math	Algebra	Linear inequalities in one or two variables	Hard

ID: c5223e7a

The triangle inequality theorem states that the sum of any two sides of a triangle must be greater than the length of the third side. If a triangle has side lengths of $\bf 6$ and $\bf 12$, which inequality represents the possible lengths, $\bf x$, of the third side of the triangle?

- A. x < 18
- B. x > 18
- C. 6 < x < 18
- D. x < 6 or x > 18

ID: c5223e7a Answer

Correct Answer: C

Rationale

Choice C is correct. It's given that a triangle has side lengths of $\bf 6$ and $\bf 12$, and $\bf x$ represents the length of the third side of the triangle. It's also given that the triangle inequality theorem states that the sum of any two sides of a triangle must be greater than the length of the third side. Therefore, the inequalities $\bf 6+x>12$, $\bf 6+12>x$, and $\bf 12+x>6$ represent all possible values of $\bf x$. Subtracting $\bf 6$ from both sides of the inequality $\bf 6+x>12$ yields $\bf x>12-6$, or $\bf x>6$. Adding $\bf 6$ and $\bf 12$ in the inequality $\bf 6+12>x$ yields $\bf 18>x$, or $\bf x<18$. Subtracting $\bf 12$ from both sides of the inequality $\bf 12+x>6$ yields $\bf x>6-12$, or $\bf x>-6$. Since all $\bf x$ -values that satisfy the inequality $\bf x>6$ also satisfy the inequality $\bf x>-6$, it follows that the inequalities $\bf x>6$ and $\bf x<18$ represent the possible values of $\bf x$. Therefore, the inequality $\bf 6< x<18$ represents the possible lengths, $\bf x$, of the third side of the triangle.

Choice A is incorrect. This inequality gives the upper bound for x but does not include its lower bound.

Choice B is incorrect and may result from conceptual or calculation errors.

Choice D is incorrect and may result from conceptual or calculation errors.

Question ID 765f5fcb

Assessment	Test	Domain	Skill	Difficulty
PSAT 8/9	Math	Algebra	Linear inequalities in one or two variables	Hard

ID: 765f5fcb

$$y > 7x - 4$$

For which of the following tables are all the values of x and their corresponding values of y solutions to the given inequality?

Α.	$oldsymbol{x}$	$oldsymbol{y}$
	3	13
	5	27
	8	48
	4	

В.	$oldsymbol{x}$	\boldsymbol{y}
	3	17
	5	31
	8	52

C.	$oldsymbol{x}$	\boldsymbol{y}
	3	21
	5	27
	8	52
	-	

D.	$oldsymbol{x}$	$oldsymbol{y}$
	3	21
	5	35
	8	56
	4	

ID: 765f5fcb Answer

Correct Answer: D

Rationale

Choice D is correct. A solution (x, y) to the given inequality is a value of x and the corresponding value of y such that the value of y is greater than the value of x. All the tables in the choices have the same three values of x, so each

of the three values of x can be substituted in the given inequality to compare the corresponding values of y in each of the tables. Substituting x for x in the given inequality yields x in the given inequality yield

Choice A is incorrect and may result from conceptual or calculation errors.

Choice B is incorrect and may result from conceptual or calculation errors.

Choice C is incorrect and may result from conceptual or calculation errors.

Question ID 38389fcd

Assessment	Test	Domain	Skill	Difficulty
PSAT 8/9	Math	Algebra	Linear inequalities in one or two variables	Hard

ID: 38389fcd

A moving truck can tow a trailer if the combined weight of the trailer and the boxes it contains is no more than 4,600 pounds. What is the maximum number of boxes this truck can tow in a trailer with a weight of 500 pounds if each box weighs 120 pounds?

- A. **34**
- B. **35**
- C. 38
- D. 39

ID: 38389fcd Answer

Correct Answer: A

Rationale

Choice A is correct. It's given that the truck can tow a trailer if the combined weight of the trailer and the boxes it contains is no more than 4,600 pounds. If the trailer has a weight of 500 pounds and each box weighs 120 pounds, the expression 500+120b, where b is the number of boxes, gives the combined weight of the trailer and the boxes. Since the combined weight must be no more than 4,600 pounds, the possible numbers of boxes the truck can tow are given by the inequality $500+120b \le 4,600$. Subtracting 500 from both sides of this inequality yields $120b \le 4,100$. Dividing both sides of this inequality by 120 yields $b \le \frac{205}{6}$, or b is less than or equal to approximately 34.17. Since the number of boxes, b, must be a whole number, the maximum number of boxes the truck can tow is the greatest whole number less than 34.17, which is 34.

Choice B is incorrect. Towing the trailer and 35 boxes would yield a combined weight of 4,700 pounds, which is greater than 4,600 pounds.

Choice C is incorrect. Towing the trailer and 38 boxes would yield a combined weight of 5,060 pounds, which is greater than 4,600 pounds.

Choice D is incorrect. Towing the trailer and 39 boxes would yield a combined weight of 5,180 pounds, which is greater than 4,600 pounds.

Question ID 07af52a4

Assessment	Test	Domain	Skill	Difficulty
PSAT 8/9	Math	Algebra	Linear inequalities in one or two variables	Hard

ID: 07af52a4

A small business owner budgets \$2,200 to purchase candles. The owner must purchase a minimum of 200 candles to maintain the discounted pricing. If the owner pays \$4.90 per candle to purchase small candles and \$11.60 per candle to purchase large candles, what is the maximum number of large candles the owner can purchase to stay within the budget and maintain the discounted pricing?

ID: 07af52a4 Answer

Correct Answer: 182

Rationale

The correct answer is 182. Let s represent the number of small candles the owner can purchase, and let ℓ represent the number of large candles the owner can purchase. It's given that the owner pays \$4.90 per candle to purchase small candles and \$11.60 per candle to purchase large candles. Therefore, the owner pays 4.90s dollars for s small candles and 11.60ℓ dollars for ℓ large candles, which means the owner pays a total of $4.90s+11.60\ell$ dollars to purchase candles. It's given that the owner budgets \$2,200 to purchase candles. Therefore, $4.90s + 11.60\ell \le 2,200$. It's also given that the owner must purchase a minimum of 200 candles. Therefore, $s+\ell \geq 200$. The inequalities $4.90s + 11.60\ell \le 2,200$ and $s + \ell \ge 200$ can be combined into one compound inequality by rewriting the second inequality so that its left-hand side is equivalent to the left-hand side of the first inequality. Subtracting ℓ from both sides of the inequality $s+\ell \geq 200$ yields $s\geq 200-\ell$. Multiplying both sides of this inequality by 4.90 yields $4.90s \geq 4.90(200-\ell)$, or $4.90s \geq 980-4.90\ell$. Adding 11.60ℓ to both sides of this inequality yields $4.90s + 11.60\ell \geq 980 - 4.90\ell + 11.60\ell$, or $4.90s + 11.60\ell \geq 980 + 6.70\ell$. This inequality can be combined with the inequality $4.90s + 11.60\ell \leq 2,200$, which yields the compound inequality $980 + 6.70\ell \le 4.90s + 11.60\ell \le 2,200$. It follows that $980 + 6.70\ell \le 2,200$. Subtracting 980 from both sides of this inequality yields $6.70\ell \le 2,200$. Dividing both sides of this inequality by 6.70 yields approximately $\ell \le 182.09$. Since the number of large candles the owner purchases must be a whole number, the maximum number of large candles the owner can purchase is the largest whole number less than 182.09, which is 182.

Question ID 6ec27879

Assessment	Test	Domain	Skill	Difficulty
PSAT 8/9	Math	Algebra	Linear inequalities in one or two variables	Hard

ID: 6ec27879

The length of a rectangle is 50 inches and the width is x inches. The perimeter is at most 210 inches. Which inequality represents this situation?

- A. $2x + 100 \le 210$
- B. $2x + 100 \ge 210$
- C. $2x+50 \leq 210$
- D. $2x+50 \geq 210$

ID: 6ec27879 Answer

Correct Answer: A

Rationale

Choice A is correct. The perimeter of a rectangle is equal to the sum of 2 times its length and 2 times its width. It's given that the rectangle's length is 50 inches and the width is x inches. Therefore, the perimeter, in inches, is 2(50) + 2x, or 100 + 2x, which is equivalent to 2x + 100. It's given that the perimeter is at most 210 inches; therefore, $2x + 100 \le 210$ represents this situation.

Choice B is incorrect. This inequality represents a situation where the perimeter is at least, rather than at most, **210** inches.

Choice C is incorrect. This inequality represents a situation where 2 times the length, rather than the length, is 50 inches.

Choice D is incorrect. This inequality represents a situation where **2** times the length, rather than the length, is **50** inches, and the perimeter is at least, rather than at most, **210** inches.

Question ID da3a02f4

Assessment	Test	Domain	Skill	Difficulty
PSAT 8/9	Math	Algebra	Linear inequalities in one or two variables	Hard

ID: da3a02f4

A truck can haul a maximum weight of 5,630 pounds. During one trip, the truck will be used to haul a 190-pound piece of equipment as well as several crates. Some of these crates weigh 25 pounds each and the others weigh 62 pounds each. Which inequality represents the possible combinations of the number of 25-pound crates, x, and the number of 62-pound crates, y, the truck can haul during one trip if only the piece of equipment and the crates are being hauled?

- A. $25x + 62y \le 5{,}440$
- B. $25x + 62y \ge 5,440$
- C. $62x + 25y \le 5{,}630$
- D. $62x + 25y \ge 5{,}630$

ID: da3a02f4 Answer

Correct Answer: A

Rationale

Choice A is correct. It's given that a truck can haul a maximum of 5,630 pounds. It's also given that during one trip, the truck will be used to haul a 190-pound piece of equipment as well as several crates. It follows that the truck can haul at most 5,630-190, or 5,440, pounds of crates. Since x represents the number of 25-pound crates, the expression 25x represents the weight of the 25-pound crates. Since y represents the number of 62-pound crates, 62y represents the weight of the 62-pound crates. Therefore, 25x+62y represents the total weight of the crates the truck can haul. Since the truck can haul at most 5,440 pounds of crates, the total weight of the crates must be less than or equal to 5,440 pounds, or $25x+62y\leq 5,440$.

Choice B is incorrect. This represents the possible combinations of the number of 25-pound crates, x, and the number of 62-pound crates, y, the truck can haul during one trip if it can haul a minimum, not a maximum, of 5,630 pounds.

Choice C is incorrect. This represents the possible combinations of the number of 62-pound crates, x, and the number of 25-pound crates, y, the truck can haul during one trip if only crates are being hauled.

Choice D is incorrect. This represents the possible combinations of the number of 62-pound crates, x, and the number of 25-pound crates, y, the truck can haul during one trip if it can haul a minimum, not a maximum, weight of 5,630 pounds and only crates are being hauled.

Question ID 36d51706

Assessment	Test	Domain	Skill	Difficulty
PSAT 8/9	Math	Algebra	Linear inequalities in one or two variables	Hard

ID: 36d51706

A team hosting an event to raise money for new uniforms plans to sell at least 140 tickets before this event and at least 220 tickets during this event to raise a total of at least 5,820 from all tickets sold. The price of a ticket during this event is 3 less than the price of a ticket before this event. Which inequality represents this situation, where x is the price, in dollars, of a ticket sold during this event?

A.
$$140(x+3) + 220x \le 5{,}820$$

B.
$$140(x+3) + 220x \ge 5,820$$

C.
$$140(x-3) + 220x \le 5{,}820$$

D.
$$140(x-3) + 220x \ge 5{,}820$$

ID: 36d51706 Answer

Correct Answer: B

Rationale

Choice B is correct. It's given that a team plans to sell at least 140 tickets before an event and at least 220 tickets during the event to raise a total of at least 5,820 from all tickets sold. It's also given that the price of a ticket during the event is 3 less than the price of a ticket before the event and that x represents the price, in dollars, of a ticket sold during the event. It follows that x+3 represents the price, in dollars, of a ticket sold before the event. The expression 140(x+3) represents the planned revenue, in dollars, from the tickets sold before the event, and the expression 220x represents the planned revenue, in dollars, from the tickets sold during the event. Thus, the expression 140(x+3)+220x represents the planned revenue, in dollars, from all tickets sold. Since the team plans to raise a total of at least 5,820 from all tickets sold, the total revenue must be at least 5,820. Therefore, the inequality $140(x+3)+220x \ge 5,820$ represents this situation.

Choice A is incorrect. This inequality represents a situation in which the team raises a total of at most \$5,820 from all tickets sold.

Choice C is incorrect. This inequality represents a situation in which the price of a ticket before the event is \$3 less, rather than \$3 more, than the price of a ticket during the event and the team raises a total of at most \$5,820 from all tickets sold.

Choice D is incorrect. This inequality represents a situation in which the price of a ticket before the event is \$3 less, rather than \$3 more, than the price of a ticket during the event.

Question ID 52d1b8ac

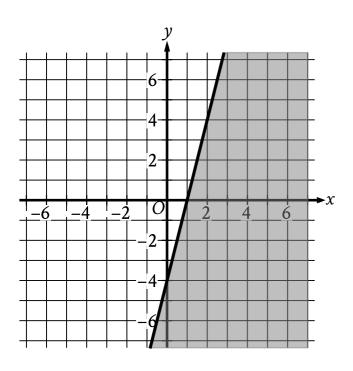
Assessment	Test	Domain	Skill	Difficulty
PSAT 8/9	Math	Algebra	Linear inequalities in one or two variables	Hard

ID: 52d1b8ac

An event planner is planning a party. It costs the event planner a onetime fee of \$35 to rent the venue and \$10.25 per attendee. The event planner has a budget of \$300. What is the greatest number of attendees possible without exceeding the budget?

ID: 52d1b8ac Answer

Correct Answer: 25


Rationale

The correct answer is 25. The total cost of the party is found by adding the onetime fee of the venue to the cost per attendee times the number of attendees. Let x be the number of attendees. The expression 35+10.25x thus represents the total cost of the party. It's given that the budget is \$300, so this situation can be represented by the inequality $35+10.25x \leq 300$. Subtracting 35 from both sides of this inequality gives $10.25x \leq 265$. Dividing both sides of this inequality by 10.25 results in approximately $x \leq 25.854$. Since the question is stated in terms of attendees, rounding 25.854 down to the greatest whole number gives the greatest number of attendees possible, which is 25.

Question ID f0bf037b

Assessment	Test	Domain	Skill	Difficulty
PSAT 8/9	Math	Algebra	Linear inequalities in one or two variables	Hard

ID: f0bf037b

The shaded region shown represents the solutions to an inequality. Which ordered pair (x,y) is a solution to this inequality?

- A. (-5, -6)
- B. (-2,5)
- C. (1,4)
- D. (6, -2)

ID: f0bf037b Answer

Correct Answer: D

Rationale

Choice D is correct. Since the shaded region shown represents the solutions to an inequality, an ordered pair (x, y) is a solution to the inequality if it's represented by a point in the shaded region. Of the given choices, only (6, -2) is represented by a point in the shaded region. Therefore, the ordered pair (6, -2) is a solution to this inequality.

Choice A is incorrect and may result from conceptual errors.

Choice B is incorrect and may result from conceptual errors.

Choice C is incorrect and may result from conceptual errors.

Question ID 9074a76a

Assessment	Test	Domain	Skill	Difficulty
PSAT 8/9	Math	Algebra	Linear inequalities in one or two variables	Hard

ID: 9074a76a

$$y \le x + 7$$
$$y \ge -2x - 1$$

Which point (x,y) is a solution to the given system of inequalities in the xy-plane?

- A. (-14,0)
- B. (0, -14)
- C.(0,14)
- D.(14,0)

ID: 9074a76a Answer

Correct Answer: D

Rationale

Choice D is correct. A point (x,y) is a solution to a system of inequalities in the xy-plane if substituting the x-coordinate and the y-coordinate of the point for x and y, respectively, in each inequality makes both of the inequalities true. Substituting the x-coordinate and the y-coordinate of choice D, 14 and 0, for x and y, respectively, in the first inequality in the given system, $y \le x + 7$, yields $0 \le 14 + 7$, or $0 \le 21$, which is true. Substituting 14 for x and x for y in the second inequality in the given system, $y \ge -2x - 1$, yields x is a solution to the given system of inequalities in the xy-plane.

Choice A is incorrect. Substituting -14 for x and 0 for y in the inequality $y \le x + 7$ yields $0 \le -14 + 7$, or $0 \le -7$, which is not true.

Choice B is incorrect. Substituting 0 for x and -14 for y in the inequality $y \ge -2x - 1$ yields $-14 \ge -2(0) - 1$, or $-14 \ge -1$, which is not true.

Choice C is incorrect. Substituting 0 for x and 14 for y in the inequality $y \le x + 7$ yields $14 \le 0 + 7$, or $14 \le 7$, which is not true.

Question ID b33a401e

Assessment	Test	Domain	Skill	Difficulty
PSAT 8/9	Math	Algebra	Linear inequalities in one or two variables	Hard

ID: b33a401e

A number x is at most 2 less than 3 times the value of y. If the value of y is -4, what is the greatest possible value of x?

ID: b33a401e Answer

Correct Answer: -14

Rationale

The correct answer is -14. It's given that a number x is at most 2 less than 3 times the value of y. Therefore, x is less than or equal to 2 less than 3 times the value of y. The expression 3y represents 3 times the value of y. The expression 3y - 2 represents 2 less than 3 times the value of y. Therefore, x is less than or equal to 3y - 2. This can be shown by the inequality $x \le 3y - 2$. Substituting -4 for y in this inequality yields $x \le 3(-4) - 2$ or, $x \le -14$. Therefore, if the value of y is -4, the greatest possible value of x is -14.

Question ID 87423f12

Assessment	Test	Domain	Skill	Difficulty
PSAT 8/9	Math	Algebra	Linear inequalities in one or two variables	Hard

ID: 87423f12

$$egin{array}{l} y < x \ x < 22 \end{array}$$

For which of the following tables are all the values of x and their corresponding values of y solutions to the given system of inequalities?

A.	$oldsymbol{x}$	$oldsymbol{y}$
	19	18
	20	19
	21	20
	4	
В.	$oldsymbol{x}$	y

В.	\boldsymbol{x}	y
	19	20
	20	21
	21	22
	4	

C.	$oldsymbol{x}$	$oldsymbol{y}$
	23	22
	24	23
	25	24
	4	

D.	\boldsymbol{x}	y
	23	24
	24	25
	25	26
	4	

ID: 87423f12 Answer

Correct Answer: A

Rationale

Choice A is correct. The inequality y < x indicates that for any solution to the given system of inequalities, the value of x must be greater than the corresponding value of y. The inequality x < 22 indicates that for any solution to the given system of inequalities, the value of x must be less than x of the given choices, only choice A contains values of x that are each greater than the corresponding value of x and less than x of inequalities.

Choice B is incorrect. The values in this table aren't solutions to the inequality y < x.

Choice C is incorrect. The values in this table aren't solutions to the inequality x < 22.

Choice D is incorrect. The values in this table aren't solutions to the inequality y < x or the inequality x < 22.

Question ID 1527f649

Assessment	Test	Domain	Skill	Difficulty
PSAT 8/9	Math	Algebra	Linear inequalities in one or two variables	Hard

ID: 1527f649

For a snowstorm in a certain town, the minimum rate of snowfall recorded was **0.6** inches per hour, and the maximum rate of snowfall recorded was **1.8** inches per hour. Which inequality is true for all values of *s*, where *s* represents a rate of snowfall, in inches per hour, recorded for this snowstorm?

- A. $s \geq 2.4$
- B. $s \geq 1.8$
- C. $0 \leq s \leq 0.6$
- D. $0.6 \leq s \leq 1.8$

ID: 1527f649 Answer

Correct Answer: D

Rationale

Choice D is correct. It's given that for a snowstorm in a certain town, the minimum rate of snowfall recorded was 0.6 inches per hour, the maximum rate of snowfall recorded was 1.8 inches per hour, and s represents a rate of snowfall, in inches per hour, recorded for this snowstorm. It follows that the inequality $0.6 \le s \le 1.8$ is true for all values of s.

Choice A is incorrect and may result from conceptual or calculation errors.

Choice B is incorrect and may result from conceptual or calculation errors.

Choice C is incorrect and may result from conceptual or calculation errors.

Question ID ffcded1d

Assessment	Test	Domain	Skill	Difficulty
PSAT 8/9	Math	Algebra	Linear inequalities in one or two variables	Hard

ID: ffcded1d

$$y > 14$$
$$4x + y < 18$$

The point (x, 53) is a solution to the system of inequalities in the *xy*-plane. Which of the following could be the value of x?

- A. -9
- B. **−5**
- C. 5
- D. **9**

ID: ffcded1d Answer

Correct Answer: A

Rationale

Choice A is correct. It's given that the point (x,53) is a solution to the given system of inequalities in the xy-plane. This means that the coordinates of the point, when substituted for the variables x and y, make both of the inequalities in the system true. Substituting 53 for y in the inequality y > 14 yields 53 > 14, which is true. Substituting 53 for y in the inequality 4x + y < 18 yields 4x + 53 < 18. Subtracting 53 from both sides of this inequality yields 4x < -35. Dividing both sides of this inequality by 4 yields x < -8.75. Therefore, x must be a value less than -8.75. Of the given choices, only -9 is less than -8.75.

Choice B is incorrect. Substituting -5 for x and 53 for y in the inequality 4x + y < 18 yields 4(-5) + 53 < 18, or 33 < 18, which is not true.

Choice C is incorrect. Substituting 5 for x and 53 for y in the inequality 4x + y < 18 yields 4(5) + 53 < 18, or 73 < 18, which is not true.

Choice D is incorrect. Substituting 9 for x and 53 for y in the inequality 4x + y < 18 yields 4(9) + 53 < 18, or 89 < 18, which is not true.

Question ID 54d54b1d

Assessment	Test	Domain	Skill	Difficulty
PSAT 8/9	Math	Algebra	Linear inequalities in one or two variables	Hard

ID: 54d54b1d

$$y < -4x + 4$$

Which point (x, y) is a solution to the given inequality in the xy-plane?

- A. (-4, 0)
- B. (0, 5)
- C.(2,1)
- D. (2, -1)

ID: 54d54b1d Answer

Correct Answer: A

Rationale

Choice D is correct. For a point (x, y) to be a solution to the given inequality in the xy-plane, the value of the point's y-coordinate must be less than the value of -4x + 4, where x is the value of the x-coordinate of the point. This is true of the point (-4, 0) because 0 < -4(-4) + 4, or 0 < 20. Therefore, the point (-4, 0) is a solution to the given inequality.

Choices A, B, and C are incorrect. None of these points are a solution to the given inequality because each point's y-coordinate is greater than the value of -4x + 4 for the point's x-coordinate.

Question ID 40e1dce8

Assessment	Test	Domain	Skill	Difficulty
PSAT 8/9	Math	Algebra	Linear inequalities in one or two variables	Hard

ID: 40e1dce8

An event planner is planning a party. It costs the event planner a onetime fee of \$35 to rent the venue and \$10.25 per attendee. The event planner has a budget of \$200. What is the greatest number of attendees possible without exceeding the budget?

ID: 40e1dce8 Answer

Correct Answer: 16

Rationale

The correct answer is 16. The total cost of the party is found by adding the onetime fee of the venue to the cost per attendee times the number of attendees. Let x be the number of attendees. The expression 35+10.25x thus represents the total cost of the party. It's given that the budget is \$200, so this situation can be represented by the inequality $35+10.25x \le 200$. The greatest number of attendees can be found by solving this inequality for x. Subtracting 35 from both sides of this inequality gives $10.25x \le 165$. Dividing both sides of this inequality by 10.25 results in approximately $x \le 16.098$. Since the question is stated in terms of attendees, rounding x down to the nearest whole number, x0, gives the greatest number of attendees possible.