## **Question ID 479fcded**

| Assessment | Test | Domain  | Skill                             | Difficulty |
|------------|------|---------|-----------------------------------|------------|
| PSAT 8/9   | Math | Algebra | Linear equations in two variables | Hard       |

### ID: 479fcded

| $oldsymbol{x}$ | $oldsymbol{y}$ |
|----------------|----------------|
| -6             | n + 184        |
| -3             | n+92           |
| 0              | n              |

The table shows three values of x and their corresponding values of y, where n is a constant, for the linear relationship between x and y. What is the slope of the line that represents this relationship in the xy-plane?

- A.  $-\frac{92}{3}$
- B.  $-\frac{3}{92}$
- C.  $\frac{n+92}{-3}$
- D.  $\frac{2n-92}{3}$

#### ID: 479fcded Answer

Correct Answer: A

Rationale

Choice A is correct. The slope, m, of a line in the xy-plane can be found using two points on the line,  $(x_1,y_1)$  and  $(x_2,y_2)$ , and the slope formula  $m=\frac{y_2-y_1}{x_2-x_1}$ . Based on the given table, the line representing the relationship between x and y in the xy-plane passes through the points (-6,n+184), (-3,n+92), and (0,n), where n is a constant. Substituting two of these points, (-3,n+92) and (0,n), for  $(x_1,y_1)$  and  $(x_2,y_2)$ , respectively, in the slope formula yields  $m=\frac{n-(n+92)}{0-(-3)}$ , which is equivalent to  $m=\frac{n-n-92}{0+3}$ , or  $m=-\frac{92}{3}$ . Therefore, the slope of the line that represents this relationship in the xy-plane is  $-\frac{92}{3}$ .

Choice B is incorrect and may result from conceptual or calculation errors.

Choice C is incorrect and may result from conceptual or calculation errors.

Choice D is incorrect and may result from conceptual or calculation errors.

## Question ID fd80013a

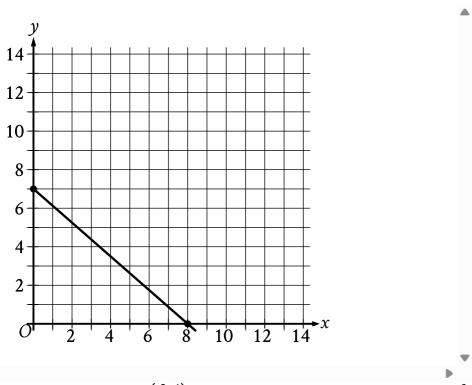
| Assessment | Test | Domain  | Skill                             | Difficulty |
|------------|------|---------|-----------------------------------|------------|
| PSAT 8/9   | Math | Algebra | Linear equations in two variables | Hard       |

### ID: fd80013a

In the *xy*-plane, line  $\ell$  passes through the point (0,0) and is parallel to the line represented by the equation y=8x+2. If line  $\ell$  also passes through the point (3,d), what is the value of d?

### ID: fd80013a Answer

Correct Answer: 24


Rationale

The correct answer is 24. A line in the xy-plane can be defined by the equation y=mx+b, where m is the slope of the line and b is the y-coordinate of the y-intercept of the line. It's given that line  $\ell$  passes through the point (0,0). Therefore, the y-coordinate of the y-intercept of line  $\ell$  is 0. It's given that line  $\ell$  is parallel to the line represented by the equation y=8x+2. Since parallel lines have the same slope, it follows that the slope of line  $\ell$  is 8. Therefore, line  $\ell$  can be defined by an equation in the form y=mx+b, where m=8 and b=0. Substituting 8 for m and m0 for m1 in m2 in m3, then when m3 in m4 yields the equation m5 in m6 yields the equation m6 in m7 in the equation m8 in the equation m9 i

## Question ID 672d125f

| Assessment | Test | Domain  | Skill                             | Difficulty |
|------------|------|---------|-----------------------------------|------------|
| PSAT 8/9   | Math | Algebra | Linear equations in two variables | Hard       |

#### ID: 672d125f



The point with coordinates (d, 4) lies on the line shown. What is the value of d?

- A.  $\frac{7}{2}$
- B.  $\frac{26}{7}$
- C.  $\frac{24}{7}$
- D.  $\frac{27}{8}$

### ID: 672d125f Answer

Correct Answer: C

Rationale

Choice C is correct. It's given from the graph that the points (0,7) and (8,0) lie on the line. For two points on a line,  $(x_1,y_1)$  and  $(x_2,y_2)$ , the slope of the line can be calculated using the slope formula  $m=\frac{y_2-y_1}{x_2-x_1}$ . Substituting (0,7) for  $(x_1,y_1)$  and (8,0) for  $(x_2,y_2)$  in this formula, the slope of the line can be calculated as  $m=\frac{0-7}{8-0}$ , or  $m=-\frac{7}{8}$ . It's also given that the point (d,4) lies on the line. Substituting (d,4) for  $(x_1,y_1)$ , (8,0) for  $(x_2,y_2)$ , and  $-\frac{7}{8}$  for m in the slope formula yields  $-\frac{7}{8}=\frac{0-4}{8-d}$ , or  $-\frac{7}{8}=\frac{-4}{8-d}$ . Multiplying both sides of this equation by 8-d yields  $-\frac{7}{8}(8-d)=-4$ . Expanding the left-hand side of this equation yields  $-7+\frac{7}{8}d=-4$ . Adding 7 to both sides of this equation yields  $\frac{7}{8}d=3$ . Multiplying both sides of this equation by  $\frac{8}{7}$  yields  $d=\frac{24}{7}$ . Thus, the value of d is  $\frac{24}{7}$ .

Choice A is incorrect. This is the value of y when x=4.

Choice B is incorrect and may result from conceptual or calculation errors.

 $\label{lem:choiceD} \textbf{Choice D is incorrect and may result from conceptual or calculation errors.}$ 

## Question ID 57a15ca6

| Assessment | Test | Domain  | Skill                             | Difficulty |
|------------|------|---------|-----------------------------------|------------|
| PSAT 8/9   | Math | Algebra | Linear equations in two variables | Hard       |

### ID: 57a15ca6

What is the slope of the graph of 10x - 5y = -12 in the *xy*-plane?

- A. -2
- B.  $-\frac{5}{6}$
- C.  $\frac{5}{6}$
- D. **2**

### ID: 57a15ca6 Answer

Correct Answer: D

Rationale

Choice D is correct. A linear equation can be written in the form y=mx+b, where m is the slope of the graph of the equation in the xy-plane and (0,b) is the y-intercept. Subtracting 10x from each side of the given equation, 10x-5y=-12, yields -5y=-10x-12. Dividing each side of this equation by -5 yields  $y=2x+\frac{12}{5}$ . This equation is in the form y=mx+b, where m=2. Therefore, the slope of the graph of the given equation in the xy-plane is 2.

Choice A is incorrect and may result from conceptual or calculation errors.

Choice B is incorrect and may result from conceptual or calculation errors.

Choice C is incorrect and may result from conceptual or calculation errors.

## **Question ID cacf0929**

| Assessment | Test | Domain  | Skill                             | Difficulty |
|------------|------|---------|-----------------------------------|------------|
| PSAT 8/9   | Math | Algebra | Linear equations in two variables | Hard       |

### ID: cacf0929

What is the slope of the graph of  $y=rac{1}{4}(27x+15)+7x$  in the *xy*-plane?

### ID: cacf0929 Answer

Correct Answer: 13.75, 55/4

Rationale

The correct answer is  $\frac{55}{4}$ . In the *xy*-plane, the graph of an equation in the form y=mx+b, where m and b are constants, has a slope of m and a y-intercept of (0,b). Applying the distributive property to the right-hand side of the given equation yields  $y=\frac{27}{4}x+\frac{15}{4}+7x$ . Combining like terms yields  $y=\frac{55}{4}x+\frac{15}{4}$ . This equation is in the form y=mx+b, where  $m=\frac{55}{4}$  and  $b=\frac{15}{4}$ . It follows that the slope of the graph of  $y=\frac{1}{4}(27x+15)+7x$  in the *xy*-plane is  $\frac{55}{4}$ . Note that 55/4 and 13.75 are examples of ways to enter a correct answer.

## Question ID 8aa7b0ea

| Assessment | Test | Domain  | Skill                             | Difficulty |
|------------|------|---------|-----------------------------------|------------|
| PSAT 8/9   | Math | Algebra | Linear equations in two variables | Hard       |

### ID: 8aa7b0ea

| $oxed{x}$ | $\boldsymbol{y}$ |
|-----------|------------------|
| k         | 13               |
| k+7       | -15              |
| 4         |                  |
| 4         |                  |
| 1         |                  |

The table gives the coordinates of two points on a line in the *xy*-plane. The *y*-intercept of the line is (k-5,b), where k and b are constants. What is the value of b?

#### ID: 8aa7b0ea Answer

Correct Answer: 33

Rationale

The correct answer is 33. It's given in the table that the coordinates of two points on a line in the xy-plane are (k,13) and (k+7,-15). The y-intercept is another point on the line. The slope computed using any pair of points from the line will be the same. The slope of a line, m, between any two points,  $(x_1,y_1)$  and  $(x_2,y_2)$ , on the line can be calculated using the slope formula,  $m=\frac{(y_2-y_1)}{(x_2-x_1)}$ . It follows that the slope of the line with the given points from the table, (k,13) and (k+7,-15), is  $m=\frac{-15-13}{k+7-k}$ , which is equivalent to  $m=\frac{-28}{7}$ , or m=-4. It's given that the y-intercept of the line is (k-5,b). Substituting -4 for m and the coordinates of the points (k-5,b) and (k,13) into the slope formula yields  $-4=\frac{13-b}{k-(k-5)}$ , which is equivalent to  $-4=\frac{13-b}{k-k+5}$ , or  $-4=\frac{13-b}{5}$ . Multiplying both sides of this equation by 5 yields -20=13-b. Subtracting 13 from both sides of this equation yields -33=-b. Dividing both sides of this equation by -1 yields b=33. Therefore, the value of b is 33.

## **Question ID 82ba8114**

| Assessment | Test | Domain  | Skill                             | Difficulty |
|------------|------|---------|-----------------------------------|------------|
| PSAT 8/9   | Math | Algebra | Linear equations in two variables | Hard       |

#### ID: 82ba8114

In the xy-plane, line t passes through the points (0,9) and (1,17). Which equation defines line t?

A. 
$$y=rac{1}{8}x+9$$

B. 
$$y=x+\frac{1}{8}$$

C. 
$$y = x + 8$$

D. 
$$y = 8x + 9$$

### ID: 82ba8114 Answer

Correct Answer: D

Rationale

Choice D is correct. An equation defining a line in the xy-plane can be written in the form y=mx+b, where m represents the slope and (0,b) represents the y-intercept of the line. It's given that line t passes through the point (0,9); therefore, b=9. The slope, m, of a line can be found using any two points on the line,  $(x_1,y_1)$  and  $(x_2,y_2)$ , and the slope formula  $m=\frac{y_2-y_1}{x_2-x_1}$ . Substituting (0,9) and (1,17) for  $(x_1,y_1)$  and  $(x_2,y_2)$ , respectively, in the slope formula yields  $m=\frac{17-9}{1-0}$ , or m=8. Substituting (0,9) for (0,9) in the equation (0,9) in the equation (0,9) in the equation (0,9).

Choice A is incorrect and may result from conceptual or calculation errors.

Choice B is incorrect and may result from conceptual or calculation errors.

Choice C is incorrect and may result from conceptual or calculation errors.

## Question ID e2c015ca

| Assessment | Test | Domain  | Skill                             | Difficulty |
|------------|------|---------|-----------------------------------|------------|
| PSAT 8/9   | Math | Algebra | Linear equations in two variables | Hard       |

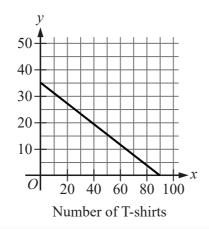
### ID: e2c015ca

The equation 7g + 7b = 840 represents the number of blue tiles, b, and the number of green tiles, g, an artist needs for an 840-square-inch tile project. The artist needs 71 blue tiles for the project. How many green tiles does he need?

#### ID: e2c015ca Answer

Correct Answer: 49

Rationale


The correct answer is 49. It's given that the equation 7g+7b=840 represents the number of blue tiles, b, and the number of green tiles, g, an artist needs for an 840-square-inch tile project. It's also given that the artist needs 71 blue tiles for the project. Substituting 71 for b in the equation 7g+7b=840 yields 7g+7(71)=840, or 7g+497=840. Subtracting 497 from both sides of this equation yields 7g=343. Dividing both sides of this equation by 7 yields g=49. Therefore, the artist needs 49 green tiles for the project.

## Question ID 891af74b

| Assessment | Test | Domain  | Skill                             | Difficulty |
|------------|------|---------|-----------------------------------|------------|
| PSAT 8/9   | Math | Algebra | Linear equations in two variables | Hard       |

#### ID: 891af74b

Number of sweatshirts



The graph models the relationship between the number of T-shirts, x, and the number of sweatshirts, y, that Kira can purchase for a school fundraiser. Which equation could represent this relationship?

A. 
$$y = 7x + 18$$

B. 
$$7x + 18y = 630$$

C. 
$$y = 18x + 7$$

D. 
$$18x + 7y = 630$$

### ID: 891af74b Answer

Correct Answer: B

#### Rationale

Choice B is correct. A line in the xy-plane can be written as y=mx+b, where m is the slope of the line and b is the y-coordinate of the y-intercept. The graph shown is a line passing through the points (0,35) and (90,0). Substituting 0 for x and 35 for y in the equation y=mx+b yields 35=m(0)+b, or 35=b. Substituting 35 for b, 90 for x, and 0 for y in the equation y=mx+b yields 0=90m+35. Subtracting 35 from both sides of this equation yields -35=90m. Dividing both sides of this equation by 90 yields  $-\frac{35}{90}=m$ , or  $-\frac{7}{18}=m$ . Substituting  $-\frac{7}{18}$  for m and m0 in the equation m1. A yields m2 in the equation m3 in the equation m3. Adding m4 to both sides of this equation yields m5. Therefore, the equation m6 represents the relationship between m7 and m8 modeled by the graph.

Choice A is incorrect. The point (0,35) is not on the graph of this equation, since 7(0)+18=18, not 35.

Choice C is incorrect. The point (0,35) is not on the graph of this equation, since 18(0)+7=7, not 35.

Choice D is incorrect. The point (90,0) is not on the graph of this equation, since 18(90) + 7(0) = 1,620, not 630.

## Question ID b17dc88e

| Assessment | Test | Domain  | Skill                             | Difficulty |
|------------|------|---------|-----------------------------------|------------|
| PSAT 8/9   | Math | Algebra | Linear equations in two variables | Hard       |

### ID: b17dc88e

Line t in the xy-plane has a slope of  $-\frac{1}{3}$  and passes through the point (9,10). Which equation defines line t?

A. 
$$y=13x-rac{1}{3}$$

B. 
$$y = 9x + 10$$

C. 
$$y = -\frac{x}{3} + 10$$

D. 
$$y = -\frac{x}{3} + 13$$

#### ID: b17dc88e Answer

Correct Answer: D

Rationale

Choice D is correct. The equation that defines line t in the xy-plane can be written in slope-intercept form y=mx+b, where m is the slope of line t and (0,b) is its y-intercept. It's given that line t has a slope of  $-\frac{1}{3}$ . Therefore,  $m=-\frac{1}{3}$ . Substituting  $-\frac{1}{3}$  for m in the equation y=mx+b yields  $y=-\frac{1}{3}x+b$ , or  $y=-\frac{x}{3}+b$ . It's also given that line t passes through the point (9,10). Substituting 9 for x and x in the equation  $y=-\frac{x}{3}+b$  yields x in the equation  $y=-\frac{x}{3}+b$ . Adding  $y=-\frac{x}{3}+b$  yields  $y=-\frac{x}{3}+b$ . Substituting  $y=-\frac{x}{3}+b$  yields  $y=-\frac{x}{3}+b$ .

Choice A is incorrect and may result from conceptual or calculation errors.

Choice B is incorrect. This equation defines a line that has a slope of 9, not  $-\frac{1}{3}$ , and passes through the point (0, 10), not (9, 10).

Choice C is incorrect. This equation defines a line that passes through the point (0, 10), not (9, 10).

# Question ID 6d6d2d18

| Assessment | Test | Domain  | Skill                             | Difficulty |
|------------|------|---------|-----------------------------------|------------|
| PSAT 8/9   | Math | Algebra | Linear equations in two variables | Hard       |

### ID: 6d6d2d18

What is the slope of the graph of  $y=rac{5x}{13}-23$  in the *xy*-plane?

### ID: 6d6d2d18 Answer

Correct Answer: .3846, 5/13

Rationale

The correct answer is  $\frac{5}{13}$ . The graph of a line in the *xy*-plane can be represented by the equation y=mx+b, where m is the slope of the line and b is the *y*-coordinate of the *y*-intercept. The given equation can be written as  $y=\left(\frac{5}{13}\right)x-23$ . Therefore, the slope of the graph of this equation in the *xy*-plane is  $\frac{5}{13}$ . Note that 5/13, .3846, 0.385, and 0.384 are examples of ways to enter a correct answer.

## Question ID c875e2b1

| Assessment | Test | Domain  | Skill                             | Difficulty |
|------------|------|---------|-----------------------------------|------------|
| PSAT 8/9   | Math | Algebra | Linear equations in two variables | Hard       |

#### ID: c875e2b1

A certain apprentice has enrolled in 85 hours of training courses. The equation 10x + 15y = 85 represents this situation, where x is the number of on-site training courses and y is the number of online training courses this apprentice has enrolled in. How many more hours does each online training course take than each on-site training course?

#### ID: c875e2b1 Answer

Correct Answer: 5

Rationale

The correct answer is 5. It's given that the equation 10x+15y=85 represents the situation, where x is the number of on-site training courses, y is the number of online training courses, and 85 is the total number of hours of training courses the apprentice has enrolled in. Therefore, 10x represents the number of hours the apprentice has enrolled in on-site training courses, and 15y represents the number of hours the apprentice has enrolled in online training courses. Since x is the number of on-site training courses and y is the number of online training courses the apprentice has enrolled in, x0 is the number of hours each on-site course takes and x1 is the number of hours each online course takes. Subtracting these numbers gives x15 - x10, or 5 more hours each online training course takes than each on-site training course.

# Question ID 9737fa47

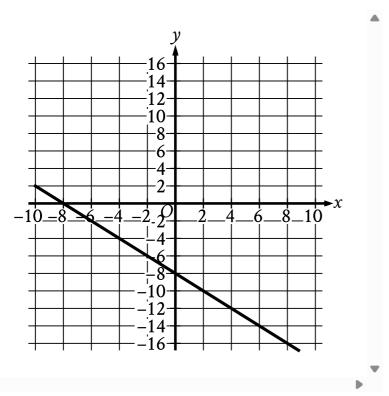
| Assessment | Test | Domain  | Skill                             | Difficulty |
|------------|------|---------|-----------------------------------|------------|
| PSAT 8/9   | Math | Algebra | Linear equations in two variables | Hard       |

### ID: 9737fa47

A line in the *xy*-plane has a slope of 9 and passes through the point (0, -5). The equation y = px + r defines the line, where p and r are constants. What is the value of p?

#### ID: 9737fa47 Answer

Correct Answer: 9


Rationale

The correct answer is  $\bf 9$ . It's given that the equation y=px+r defines the line. In this equation, p represents the slope of the line and r represents the y-coordinate of the y-intercept of the line. It's given that the line has a slope of  $\bf 9$ . Therefore, the value of p is  $\bf 9$ .

## Question ID 992040e7

| Assessment | Test | Domain  | Skill                             | Difficulty |
|------------|------|---------|-----------------------------------|------------|
| PSAT 8/9   | Math | Algebra | Linear equations in two variables | Hard       |

#### ID: 992040e7



What is an equation of the graph shown?

A. 
$$y = -2x - 8$$

B. 
$$y = x - 8$$

C. 
$$y = -x - 8$$

D. 
$$y = 2x - 8$$

#### ID: 992040e7 Answer

Correct Answer: C

#### Rationale

Choice C is correct. An equation of a line can be written in the form y=mx+b, where m is the slope of the line and (0,b) is the y-intercept of the line. The line shown passes through the point (0,-8), so b=-8. The line shown also passes through the point (-8,0). The slope, m, of a line passing through two points  $(x_1,y_1)$  and  $(x_2,y_2)$  can be calculated using the equation  $m=\frac{y_2-y_1}{x_2-x_1}$ . For the points (0,-8) and (-8,0), this gives  $m=\frac{(-8)-0}{0-(-8)}$ , or m=-1. Substituting -8 for b and -1 for m in y=mx+b yields y=(-1)x+(-8), or y=-x-8. Therefore, an equation of the graph shown is y=-x-8.

Choice A is incorrect. This is an equation of a line with a slope of -2, not -1.

Choice B is incorrect. This is an equation of a line with a slope of 1, not -1.

Choice D is incorrect. This is an equation of a line with a slope of  ${\bf 2}$ , not  ${\bf -1}$ .

## **Question ID 83237209**

| Assessment | Test | Domain  | Skill                             | Difficulty |
|------------|------|---------|-----------------------------------|------------|
| PSAT 8/9   | Math | Algebra | Linear equations in two variables | Hard       |

#### ID: 83237209

A store sells two different-sized containers of blueberries. The store's sales of these blueberries totaled 896.86 dollars last month. The equation 4.51x + 6.07y = 896.86 represents this situation, where x is the number of smaller containers sold and y is the number of larger containers sold. According to the equation, what is the price, in dollars, of each smaller container?

#### ID: 83237209 Answer

Correct Answer: 4.51, 451/100

#### Rationale

The correct answer is 4.51. It's given that the equation 4.51x + 6.07y = 896.86 represents this situation, where x is the number of smaller containers sold, y is the number of larger containers sold, and 896.86 is the store's total sales, in dollars, of blueberries last month. Therefore, 4.51x represents the store's sales, in dollars, of smaller containers, and 6.07y represents the store's sales, in dollars, of larger containers. Since x is the number of smaller containers sold, the price, in dollars, of each smaller container is 4.51.

## Question ID a7bd2179

| Assessment | Test | Domain  | Skill                             | Difficulty |
|------------|------|---------|-----------------------------------|------------|
| PSAT 8/9   | Math | Algebra | Linear equations in two variables | Hard       |

#### ID: a7bd2179

| $\boldsymbol{x}$ | $oldsymbol{y}$ |
|------------------|----------------|
| -2s              | 24             |
| -s               | 21             |
| s                | 15             |
| 4                |                |

The table shows three values of x and their corresponding values of y, where s is a constant. There is a linear relationship between x and y. Which of the following equations represents this relationship?

$$A. sx + 3y = 18s$$

$$B.\ 3x + sy = 18s$$

C. 
$$3x + sy = 18$$

D. 
$$sx + 3y = 18$$

#### ID: a7bd2179 Answer

Correct Answer: B

Rationale

Choice B is correct. The linear relationship between x and y can be represented by an equation of the form  $y-y_1=m(x-x_1)$ , where m is the slope of the graph of the equation in the xy-plane and  $(x_1,y_1)$  is a point on the graph. The slope of a line can be found using two points on the line and the slope formula  $m=\frac{y_2-y_1}{x_2-x_1}$ . Each value of x and its corresponding value of y in the table can be represented by a point (x,y). Substituting the points (-s,21) and (s,15) for  $(x_1,y_1)$  and  $(x_2,y_2)$ , respectively, in the slope formula yields  $m=\frac{15-21}{s-(-s)}$ , which gives  $m=\frac{-6}{2s}$ , or  $m=-\frac{3}{s}$ . Substituting  $-\frac{3}{s}$  for m and the point (s,15) for  $(x_1,y_1)$  in the equation  $y-y_1=m(x-x_1)$  yields  $y-15=-\frac{3}{s}(x-s)$ . Distributing  $-\frac{3}{s}$  on the right-hand side of this equation yields  $y-15=-\frac{3x}{s}+3$ . Adding y=150 to each side of this equation yields y=151. Multiplying each side of this equation by y=152 represents this relationship.

Choice A is incorrect and may result from conceptual or calculation errors.

Choice C is incorrect and may result from conceptual or calculation errors.

Choice D is incorrect and may result from conceptual or calculation errors.

## Question ID 007254a7

| Assessment | Test | Domain  | Skill                             | Difficulty |
|------------|------|---------|-----------------------------------|------------|
| PSAT 8/9   | Math | Algebra | Linear equations in two variables | Hard       |

### ID: 007254a7

A line passes through the points (4,6) and (15,24) in the xy-plane. What is the slope of the line?

### ID: 007254a7 Answer

Correct Answer: 1.636, 18/11

Rationale

The correct answer is  $\frac{18}{11}$ . For a line that passes through the points  $(x_1,y_1)$  and  $(x_2,y_2)$  in the xy-plane, the slope of the line can be calculated using the slope formula,  $m=\frac{y_2-y_1}{x_2-x_1}$ . It's given that a line passes through the points (4,6) and (15,24) in the xy-plane. Substituting (4,6) for  $(x_1,y_1)$  and (15,24) for  $(x_2,y_2)$  in the slope formula,  $m=\frac{y_2-y_1}{x_2-x_1}$ , yields  $m=\frac{24-6}{15-4}$ , or  $m=\frac{18}{11}$ . Therefore, the slope of the line is  $\frac{18}{11}$ . Note that 18/11 and 1.636 are examples of ways to enter a correct answer.

## Question ID d1db7318

| Assessment | Test | Domain  | Skill                             | Difficulty |
|------------|------|---------|-----------------------------------|------------|
| PSAT 8/9   | Math | Algebra | Linear equations in two variables | Hard       |

### ID: d1db7318

Line  $\ell$  is defined by 3y + 12x = 5. Line n is perpendicular to line  $\ell$  in the xy-plane. What is the slope of line n?

### ID: d1db7318 Answer

Correct Answer: 0.25, 1/4

Rationale

The correct answer is  $\frac{1}{4}$ . For an equation in slope-intercept form y=mx+b, m represents the slope of the line in the xy-plane defined by this equation. It's given that line  $\ell$  is defined by 3y+12x=5. Subtracting 12x from both sides of this equation yields 3y=-12x+5. Dividing both sides of this equation by 3 yields  $y=-\frac{12}{3}x+\frac{5}{3}$ , or  $y=-4x+\frac{5}{3}$ . Thus, the slope of line  $\ell$  in the xy-plane is -4. Since line n is perpendicular to line  $\ell$  in the xy-plane, the slope of line n is the negative reciprocal of the slope of line  $\ell$ . The negative reciprocal of -4 is  $-\frac{1}{(-4)}=\frac{1}{4}$ . Note that 1/4 and .25 are examples of ways to enter a correct answer.

## Question ID 37a6c2a9

| Assessment | Test | Domain  | Skill                             | Difficulty |
|------------|------|---------|-----------------------------------|------------|
| PSAT 8/9   | Math | Algebra | Linear equations in two variables | Hard       |

### ID: 37a6c2a9

The graph of 9x - 10y = 19 is translated down 4 units in the *xy*-plane. What is the *x*-coordinate of the *x*-intercept of the resulting graph?

#### ID: 37a6c2a9 Answer

Correct Answer: 59/9, 6.555, 6.556

#### Rationale

The correct answer is  $\frac{59}{9}$ . When the graph of an equation in the form Ax+By=C, where A, B, and C are constants, is translated down k units in the xy-plane, the resulting graph can be represented by the equation Ax+B(y+k)=C. It's given that the graph of 9x-10y=19 is translated down 4 units in the xy-plane. Therefore, the resulting graph can be represented by the equation 9x-10(y+4)=19, or 9x-10y-40=19. Adding 40 to both sides of this equation yields 9x-10y=59. The x-coordinate of the x-intercept of the graph of an equation in the xy-plane is the value of x in the equation when y=0. Substituting 0 for y in the equation 9x-10y=59 yields 9x-10(0)=59, or 9x=59. Dividing both sides of this equation by y yields  $x=\frac{59}{9}$ . Therefore, the x-coordinate of the x-intercept of the resulting graph is  $\frac{59}{9}$ . Note that 59/9, 6.555, and 6.556 are examples of ways to enter a correct answer.

## Question ID d149d565

| Assessment | Test | Domain  | Skill                             | Difficulty |
|------------|------|---------|-----------------------------------|------------|
| PSAT 8/9   | Math | Algebra | Linear equations in two variables | Hard       |

### ID: d149d565

Line h is defined by  $\frac{1}{5}x + \frac{1}{7}y - 70 = 0$ . Line j is perpendicular to line h in the xy-plane. What is the slope of line j?

- A.  $-\frac{7}{5}$
- B.  $-\frac{5}{7}$
- C.  $\frac{7}{5}$
- D.  $\frac{5}{7}$

### ID: d149d565 Answer

Correct Answer: D

Rationale

Choice D is correct. It's given that line h is defined by  $\frac{1}{5}x+\frac{1}{7}y-70=0$ . This equation can be written in slope-intercept form y=mx+b, where m is the slope of line h and b is the y-coordinate of the y-intercept of line h. Adding 70 to both sides of  $\frac{1}{5}x+\frac{1}{7}y-70=0$  yields  $\frac{1}{5}x+\frac{1}{7}y=70$ . Subtracting  $\frac{1}{5}x$  from both sides of this equation yields  $\frac{1}{7}y=-\frac{1}{5}x+70$ . Multiplying both sides of this equation by 7 yields  $y=-\frac{7}{5}x+490$ . Therefore, the slope of line h is  $-\frac{7}{5}$ . It's given that line h is perpendicular to line h in the h-line h

Choice A is incorrect. This is the slope of a line in the xy-plane that is parallel, not perpendicular, to line h.

Choice B is incorrect. This is the reciprocal, not the negative reciprocal, of  $-\frac{7}{5}$ .

Choice C is incorrect. This is the negative, not the negative reciprocal, of  $-\frac{7}{5}$ .

## **Question ID ceb0737c**

| Assessment | Test | Domain  | Skill                             | Difficulty |
|------------|------|---------|-----------------------------------|------------|
| PSAT 8/9   | Math | Algebra | Linear equations in two variables | Hard       |

### ID: ceb0737c

Line p is defined by 2y + 18x = 9. Line r is perpendicular to line p in the xy-plane. What is the slope of line r?

- A. **-9**
- B.  $-\frac{1}{9}$
- C.  $\frac{1}{9}$
- D. 9

#### ID: ceb0737c Answer

Correct Answer: C

Rationale

Choice C is correct. It's given that line r is perpendicular to line p in the xy-plane. This means that the slope of line r is the negative reciprocal of the slope of line p. If the equation for line p is rewritten in slope-intercept form y=mx+b, where m and b are constants, then m is the slope of the line and (0,b) is its y-intercept. Subtracting 18x from both sides of the equation 2y+18x=9 yields 2y=-18x+9. Dividing both sides of this equation by 2 yields  $y=-9x+\frac{9}{2}$ . It follows that the slope of line p is -9. The negative reciprocal of a number is -1 divided by the number. Therefore, the negative reciprocal of -9 is  $\frac{-1}{-9}$ , or  $\frac{1}{9}$ . Thus, the slope of line r is  $\frac{1}{9}$ .

Choice A is incorrect. This is the slope of line p, not line r.

Choice B is incorrect. This is the reciprocal, not the negative reciprocal, of the slope of line p.

Choice D is incorrect. This is the negative, not the negative reciprocal, of the slope of line p.

## Question ID 6e19ea96

| Assessment | Test | Domain  | Skill                             | Difficulty |
|------------|------|---------|-----------------------------------|------------|
| PSAT 8/9   | Math | Algebra | Linear equations in two variables | Hard       |

#### ID: 6e19ea96

A certain township consists of a 5-hectare industrial park and a 24-hectare neighborhood. The total number of trees in the township is 4,529. The equation 5x + 24y = 4,529 represents this situation. Which of the following is the best interpretation of x in this context?

- A. The average number of trees per hectare in the industrial park
- B. The average number of trees per hectare in the neighborhood
- C. The total number of trees in the industrial park
- D. The total number of trees in the neighborhood

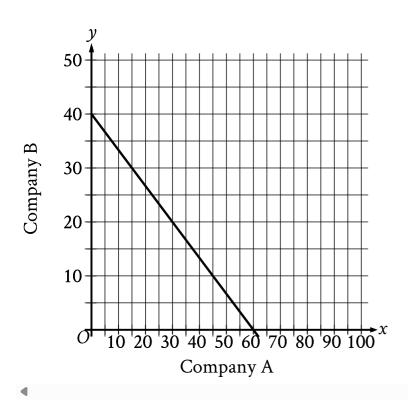
#### ID: 6e19ea96 Answer

Correct Answer: A

Rationale

Choice A is correct. It's given that a certain township consists of a 5-hectare industrial park and a 24-hectare neighborhood and that the total number of trees in the township is 4,529. It's also given that the equation 5x + 24y = 4,529 represents this situation. Since the total number of trees for a given area can be determined by taking the size of the area, in hectares, times the average number of trees per hectare, the best interpretation of 5x is the number of trees in the industrial park and the best interpretation of 24y is the number of trees in the neighborhood. Since 5 is the size of the industrial park, in hectares, the best interpretation of x is the average number of trees per hectare in the industrial park.

Choice B is incorrect and may result from conceptual errors.


Choice C is incorrect and may result from conceptual errors.

Choice D is incorrect and may result from conceptual errors.

## Question ID c76c55f1

| Assessment | Test | Domain  | Skill                             | Difficulty |
|------------|------|---------|-----------------------------------|------------|
| PSAT 8/9   | Math | Algebra | Linear equations in two variables | Hard       |

### ID: c76c55f1



The graph shows the relationship between the number of shares of stock from Company A, x, and the number of shares of stock from Company B, y, that Simone can purchase. Which equation could represent this relationship?

A. 
$$y = 8x + 12$$

B. 
$$8x + 12y = 480$$

C. 
$$y = 12x + 8$$

D. 
$$12x + 8y = 480$$

#### ID: c76c55f1 Answer

Correct Answer: B

#### Rationale

Choice B is correct. The graph shown is a line passing through the points (0,40) and (60,0). Since the relationship between x and y is linear, if two points on the graph make a linear equation true, then the equation represents the relationship. Substituting 0 for x and 40 for y in the equation in choice B, 8x+12y=480, yields 8(0)+12(40)=480, or 480=480, which is true. Substituting 60 for x and x0 for x1 in the equation x2 in the equation x3 represents the relationship between x3 and x4.

Choice A is incorrect. The point (0,40) is not on the graph of this equation, since 40=8(0)+12, or 40=12, is not true.

Choice C is incorrect. The point (0,40) is not on the graph of this equation, since 40 = 12(0) + 8, or 40 = 8, is not true.

Choice D is incorrect. The point (0,40) is not on the graph of this equation, since 12(0) + 8(40) = 480, or 320 = 480, is not true.

### Question ID 58268fa4

| Assessment | Test | Domain  | Skill                             | Difficulty |
|------------|------|---------|-----------------------------------|------------|
| PSAT 8/9   | Math | Algebra | Linear equations in two variables | Hard       |

#### ID: 58268fa4

$$5x + 7y = 1$$
$$ax + by = 1$$

In the given pair of equations, a and b are constants. The graph of this pair of equations in the xy-plane is a pair of perpendicular lines. Which of the following pairs of equations also represents a pair of perpendicular lines?

A. 
$$10x + 7y = 1$$
  
 $ax - 2by = 1$ 

B. 
$$10x + 7y = 1$$
  
 $ax + 2by = 1$ 

C. 
$$10x + 7y = 1$$
  
 $2ax + by = 1$ 

D. 
$$5x - 7y = 1$$
  
 $ax + by = 1$ 

#### ID: 58268fa4 Answer

Correct Answer: B

#### Rationale

Choice B is correct. Two lines are perpendicular if their slopes are negative reciprocals, meaning that the slope of the first line is equal to -1 divided by the slope of the second line. Each equation in the given pair of equations can be written in slope-intercept form, y=mx+b, where m is the slope of the graph of the equation in the xy-plane and (0,b) is the y-intercept. For the first equation, 5x+7y=1, subtracting 5x from both sides gives 7y=-5x+1, and dividing both sides of this equation by 7 gives  $y=-\frac{5}{7}x+\frac{1}{7}$ . Therefore, the slope of the graph of this equation is  $-\frac{5}{7}$ . For the second equation, ax+by=1, subtracting ax from both sides gives by=-ax+1, and dividing both sides of this equation by b gives  $y=-\frac{a}{b}x+\frac{1}{b}$ . Therefore, the slope of the graph of this equation is  $-\frac{a}{b}$ . Since the graph of the given pair of equations is a pair of perpendicular lines, the slope of the graph of the second equation,  $-\frac{a}{b}$ , must be the negative reciprocal of the slope of the graph of the first equation,  $-\frac{5}{7}$ . The negative reciprocal of  $-\frac{5}{7}$  is  $-\frac{1}{(-\frac{5}{7})}$ , or  $\frac{7}{5}$ . Therefore,  $-\frac{a}{b}=\frac{7}{5}$ , or  $\frac{a}{b}=-\frac{7}{5}$ . Similarly, rewriting the equations in choice B in slope-intercept form yields

Therefore,  $-\frac{a}{b} = \frac{7}{5}$ , or  $\frac{a}{b} = -\frac{7}{5}$ . Similarly, rewriting the equations in choice B in slope-intercept form yields  $y = -\frac{10}{7}x + \frac{1}{7}$  and  $y = -\frac{a}{2b}x + \frac{1}{2b}$ . It follows that the slope of the graph of the first equation in choice B is  $-\frac{10}{7}$  and the slope of the graph of the second equation in choice B is  $-\frac{a}{2b}$ . Since  $\frac{a}{b} = -\frac{7}{5}$ ,  $-\frac{a}{2b}$  is equal to  $-\left(\frac{1}{2}\right)\left(-\frac{7}{5}\right)$ , or  $\frac{7}{10}$ . Since  $\frac{7}{10}$  is the negative reciprocal of  $-\frac{10}{7}$ , the pair of equations in choice B represents a pair of perpendicular lines.

Choice A is incorrect and may result from conceptual or calculation errors.

Choice C is incorrect and may result from conceptual or calculation errors.

Choice D is incorrect and may result from conceptual or calculation errors.

## Question ID 8905014c

| Assessment | Test | Domain  | Skill                             | Difficulty |
|------------|------|---------|-----------------------------------|------------|
| PSAT 8/9   | Math | Algebra | Linear equations in two variables | Hard       |

#### ID: 8905014c

In the xy-plane, line k passes through the points (0,-5) and (1,-1). Which equation defines line k?

A. 
$$y=-x+rac{1}{4}$$

B. 
$$y=rac{1}{4}x-5$$

C. 
$$y=-x+4$$

D. 
$$y = 4x - 5$$

#### ID: 8905014c Answer

Correct Answer: D

Rationale

Choice D is correct. An equation defining a line in the xy-plane can be written in the form y=mx+b, where m represents the slope and (0,b) represents the y-intercept of the line. It's given that line k passes through the point (0,-5); therefore, b=-5. The slope, m, of a line can be found using any two points on the line,  $(x_1,y_1)$  and  $(x_2,y_2)$ , and the slope formula  $m=\frac{y_2-y_1}{x_2-x_1}$ . Substituting the points (0,-5) and (1,-1) for  $(x_1,y_1)$  and  $(x_2,y_2)$ , respectively, in the slope formula yields  $m=\frac{(-1-(-5))}{(1-0)}$ , or m=4. Substituting 4 for m and -5 for b in the equation y=mx+b yields y=4x-5.

Choice A is incorrect and may result from conceptual or calculation errors.

Choice B is incorrect and may result from conceptual or calculation errors.

Choice C is incorrect and may result from conceptual or calculation errors.

## Question ID d6f829aa

| Assessment | Test | Domain  | Skill                             | Difficulty |
|------------|------|---------|-----------------------------------|------------|
| PSAT 8/9   | Math | Algebra | Linear equations in two variables | Hard       |

### ID: d6f829aa

When line n is graphed in the xy-plane, it has an x-intercept of  $\left(-4,0\right)$  and a y-intercept of  $\left(0,\frac{86}{3}\right)$ . What is the slope of line n?

- A.  $\frac{3}{344}$
- B.  $\frac{6}{43}$
- C.  $\frac{43}{6}$
- D.  $\frac{344}{3}$

#### ID: d6f829aa Answer

Correct Answer: C

Rationale

Choice C is correct. It's given that when line n is graphed in the xy-plane, it has an x-intercept of  $\left(-4,0\right)$  and a y-intercept of  $\left(0,\frac{86}{3}\right)$ . The slope, m, of a line can be found using any two points on the line,  $\left(x_1,y_1\right)$  and  $\left(x_2,y_2\right)$ , and the slope formula  $m=\frac{y_2-y_1}{x_2-x_1}$ . Substituting the points  $\left(-4,0\right)$  and  $\left(0,\frac{86}{3}\right)$  for  $\left(x_1,y_1\right)$  and  $\left(x_2,y_2\right)$ , respectively, in the slope formula yields  $m=\frac{\frac{86}{3}-0}{0-(-4)}$ , or  $m=\frac{43}{6}$ . Therefore, the slope of line n is  $\frac{43}{6}$ .

Choice A is incorrect and may result from conceptual or calculation errors.

Choice B is incorrect. This is the slope of a line that has an x-intercept of  $(\frac{86}{3},0)$  and a y-intercept of (0,-4).

Choice D is incorrect and may result from conceptual or calculation errors.

## Question ID ed45b58a

| Assessment | Test | Domain  | Skill                             | Difficulty |
|------------|------|---------|-----------------------------------|------------|
| PSAT 8/9   | Math | Algebra | Linear equations in two variables | Hard       |

### ID: ed45b58a

If the graph of 27x + 33y = 297 is shifted down 5 units in the xy-plane, what is the y-intercept of the resulting graph?

- A. (0,4)
- B. (0,6)
- C.(0,14)
- D.(0,28)

### ID: ed45b58a Answer

Correct Answer: A

#### Rationale

Choice A is correct. When the graph of an equation in the form Ax+By=C, where A, B, and C are constants, is shifted down k units in the xy-plane, the resulting graph can be represented by the equation Ax+B(y+k)=C. It's given that the graph of 27x+33y=297 is shifted down 5 units in the xy-plane. Therefore, the resulting graph can be represented by the equation 27x+33(y+5)=297, or 27x+33y+165=297. Subtracting 165 from both sides of this equation yields 27x+33y=132. The y-intercept of the graph of an equation in the xy-plane is the point where the line intersects the y-axis, represented by the point (0,y). Substituting 0 for x in the equation 27x+33y=132 yields 27(0)+33y=132, or 33y=132. Dividing both sides of this equation by 33 yields y=4. Therefore, if the graph of 27x+33y=297 is shifted down 5 units, the y-intercept of the resulting graph is (0,4).

Choice B is incorrect and may result from conceptual or calculation errors.

Choice C is incorrect. This is the *y*-intercept of the graph of 27x + 33y = 297 shifted up, not down, 5 units.

Choice D is incorrect and may result from conceptual or calculation errors.

## Question ID c9640c5e

| Assessment | Test | Domain  | Skill                             | Difficulty |
|------------|------|---------|-----------------------------------|------------|
| PSAT 8/9   | Math | Algebra | Linear equations in two variables | Hard       |

ID: c9640c5e

$$5G + 45R = 380$$

At a school fair, students can win colored tokens that are worth a different number of points depending on the color. One student won G green tokens and R red tokens worth a total of 380 points. The given equation represents this situation. How many more points is a red token worth than a green token?

#### ID: c9640c5e Answer

Correct Answer: 40

Rationale

The correct answer is 40. It's given that 5G + 45R = 380, where G is the number of green tokens and R is the number of red tokens won by one student and these tokens are worth a total of 380 points. Since the equation represents the situation where the student won points with green tokens and red tokens for a total of 380 points, each term on the left-hand side of the equation represents the number of points won for one of the colors. Since the coefficient of G in the given equation is G, a green token must be worth G points. Similarly, since the coefficient of G in the given equation is G0 points, more than a green token.

## Question ID d6b7f117

| Assessment | Test | Domain  | Skill                             | Difficulty |
|------------|------|---------|-----------------------------------|------------|
| PSAT 8/9   | Math | Algebra | Linear equations in two variables | Hard       |

### ID: d6b7f117

#### 24.5x + 24.75y = 641

Isabel ordered topsoil and crushed stone, which cost a total of \$641, for her garden. The given equation represents the relationship between the number of cubic yards of topsoil, x, and the number of tons of crushed stone, y, Isabel ordered. How much more, in dollars, did a ton of crushed stone cost Isabel than a cubic yard of topsoil?

#### ID: d6b7f117 Answer

Correct Answer: 0.25, 1/4

#### Rationale

The correct answer is .25. It's given that the topsoil and crushed stone Isabel ordered for her garden cost a total of \$641. It's also given that the equation 24.5x + 24.75y = 641 represents the relationship between the number of cubic yards of topsoil, x, and the number of tons of crushed stone, y, that Isabel ordered. Since x represents the number of cubic yards of topsoil ordered, 24.5x represents the total cost, in dollars, of the topsoil, and the cost per cubic yard of topsoil is \$24.50. Similarly, since y represents the number of tons of crushed stone ordered, 24.75y represents the total cost, in dollars, of crushed stone ordered, and the cost per ton of crushed stone is \$24.75. Therefore, a ton of crushed stone cost Isabel 24.75 - 24.50, or 0.25, more dollars than a cubic yard of topsoil. Note that .25 and 1/4 are examples of ways to enter a correct answer.

## Question ID b6c52d17

| Assessment | Test | Domain  | Skill                             | Difficulty |
|------------|------|---------|-----------------------------------|------------|
| PSAT 8/9   | Math | Algebra | Linear equations in two variables | Hard       |

#### ID: b6c52d17

The graph of 7x+2y=-31 in the xy-plane has an x-intercept at (a,0) and a y-intercept at (0,b), where a and b are constants. What is the value of  $\frac{b}{a}$ ?

- A.  $-\frac{7}{2}$
- $B.-\frac{2}{7}$
- C.  $\frac{2}{7}$
- D.  $\frac{7}{2}$

### ID: b6c52d17 Answer

Correct Answer: D

Rationale

Choice D is correct. The x-coordinate a of the x-intercept (a,0) can be found by substituting 0 for y in the given equation, which gives 7x+2(0)=-31, or 7x=-31. Dividing both sides of this equation by 7 yields  $x=-\frac{31}{7}$ . Therefore, the value of a is  $-\frac{31}{7}$ . The y-coordinate b of the y-intercept (0,b) can be found by substituting 0 for x in the given equation, which gives 7(0)+2y=-31, or 2y=-31. Dividing both sides of this equation by 2 yields  $y=-\frac{31}{2}$ . Therefore, the value of b is  $-\frac{31}{2}$ . It follows that the value of  $\frac{b}{a}$  is  $\frac{-\frac{31}{2}}{-\frac{31}{2}}$ , which is equivalent to  $\left(\frac{31}{2}\right)\left(\frac{7}{31}\right)$ , or  $\frac{7}{2}$ .

Choice A is incorrect and may result from conceptual or calculation errors.

Choice B is incorrect and may result from conceptual or calculation errors.

Choice C is incorrect and may result from conceptual or calculation errors.

## Question ID 6392c153

| Assessment | Test | Domain  | Skill                             | Difficulty |
|------------|------|---------|-----------------------------------|------------|
| PSAT 8/9   | Math | Algebra | Linear equations in two variables | Hard       |

### ID: 6392c153

Line k is defined by  $y = \frac{17}{7}x + 4$ . Line j is parallel to line k in the xy-plane. What is the slope of line j?

- A.  $\frac{7}{17}$
- B.  $\frac{17}{7}$
- C. 4
- D. 17

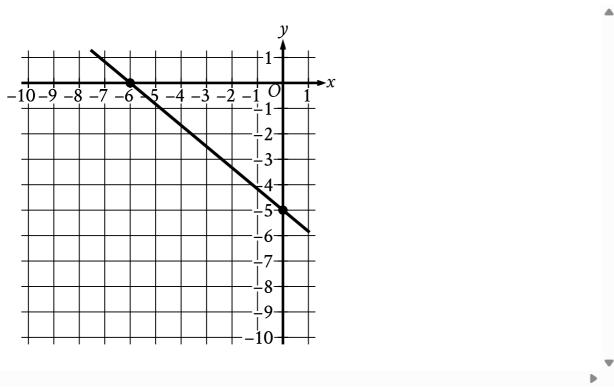
### ID: 6392c153 Answer

Correct Answer: B

Rationale

Choice B is correct. It's given that line k is defined by  $y=\frac{17x}{7}+4$ . For an equation of a line written in the form y=mx+b, m is the slope of the line and b is the y-coordinate of the y-intercept of the line. It follows that the slope of line k is  $\frac{17}{7}$ . It's also given that line j is parallel to line k in the xy-plane. Since parallel lines have equal slopes, line j also has a slope of  $\frac{17}{7}$ .

Choice A is incorrect and may result from conceptual or calculation errors.


Choice C is incorrect. This is the y-coordinate of the y-intercept of line k, not the slope of line j.

Choice D is incorrect and may result from conceptual or calculation errors.

## Question ID 271580a8

| Assessment | Test | Domain  | Skill                             | Difficulty |
|------------|------|---------|-----------------------------------|------------|
| PSAT 8/9   | Math | Algebra | Linear equations in two variables | Hard       |

### ID: 271580a8



Line k is shown in the xy-plane. Line j (not shown) is perpendicular to line k. What is the slope of line j?

#### ID: 271580a8 Answer

Correct Answer: 1.2, 6/5

Rationale

The correct answer is  $\frac{6}{5}$ . It's given that line j is perpendicular to line k in the xy-plane. This means that the slope of line jis the opposite reciprocal of the slope of line k. For a line that passes through the points  $(x_1,y_1)$  and  $(x_2,y_2)$  in the xyplane, the slope of the line can be calculated as  $\frac{y_2-y_1}{x_2-x_1}$ . It's shown that line k passes through the points (-6,0) and (0,-5) in the xy-plane. Substituting -6 for  $x_1$ , 0 for  $y_1$ , 0 for  $x_2$ , and -5 for  $y_2$  in  $\frac{y_2-y_1}{x_2-x_1}$  yields  $\frac{-5-0}{0-(-6)}$ , or  $-\frac{5}{6}$ . The opposite reciprocal of  $-\frac{5}{6}$  is  $\frac{6}{5}$ . Therefore, the slope of line j is  $\frac{6}{5}$ . Note that 6/5 and 1.2 are examples of ways to enter a correct answer.

## **Question ID 476dc73f**

| Assessment | Test | Domain  | Skill                             | Difficulty |
|------------|------|---------|-----------------------------------|------------|
| PSAT 8/9   | Math | Algebra | Linear equations in two variables | Hard       |

#### ID: 476dc73f

A total of  ${\bf 2}$  squares each have side length  ${\bf r}$ . A total of  ${\bf 6}$  equilateral triangles each have side length  ${\bf t}$ . None of these squares and triangles shares a side. The sum of the perimeters of all these squares and triangles is  ${\bf 210}$ . Which equation represents this situation?

A. 
$$6r + 24t = 210$$

B. 
$$2r + 6t = 210$$

C. 
$$8r + 18t = 210$$

D. 
$$6r + 2t = 210$$

#### ID: 476dc73f Answer

Correct Answer: C

Rationale

Choice C is correct. It's given that a total of 2 squares each have side length r. Therefore, each of the squares has perimeter 4r. Since there are a total of 2 squares, the sum of the perimeters of these squares is 4r + 4r, which is equivalent to 2(4r), or 8r. It's also given that a total of 6 equilateral triangles each have side length t. Therefore, each of the equilateral triangles has perimeter 3t. Since there are a total of 6 equilateral triangles, the sum of the perimeters of these triangles is 3t + 3t + 3t + 3t + 3t + 3t, which is equivalent to 6(3t), or 18t. Since the sum of the perimeters of the squares is 8r and the sum of the perimeters of the triangles is 18t, the sum of the perimeters of all these squares and triangles is 8r + 18t. It's given that the sum of the perimeters of all these squares and triangles is 210. Therefore, the equation 8r + 18t = 210 represents this situation.

Choice A is incorrect and may result from conceptual or calculation errors.

Choice B is incorrect and may result from conceptual or calculation errors.

Choice D is incorrect and may result from conceptual or calculation errors.

# Question ID 55634ff7

| Assessment | Test | Domain  | Skill                             | Difficulty |
|------------|------|---------|-----------------------------------|------------|
| PSAT 8/9   | Math | Algebra | Linear equations in two variables | Hard       |

#### ID: 55634ff7

A chemist combines water and acetic acid to make a mixture with a volume of 56 milliliters (mL). The volume of acetic acid in the mixture is 10 mL. What is the volume of water, in mL, in the mixture? (Assume that the volume of the mixture is the sum of the volumes of water and acetic acid before they were mixed.)

#### ID: 55634ff7 Answer

Correct Answer: 46

Rationale

The correct answer is 46. It's given that a chemist combines water and acetic acid to make a mixture with a volume of 56 milliliters (mL) and that the volume of acetic acid in the mixture is 10 mL. Let x represent the volume of water, in mL, in the mixture. The equation x + 10 = 56 represents this situation. Subtracting 10 from both sides of this equation yields x = 46. Therefore, the volume of water, in mL, in the mixture is 46.

# Question ID 69236d08

| Assessment | Test | Domain  | Skill                             | Difficulty |
|------------|------|---------|-----------------------------------|------------|
| PSAT 8/9   | Math | Algebra | Linear equations in two variables | Hard       |

#### ID: 69236d08

| $\boldsymbol{x}$ | y   |
|------------------|-----|
| 18               | 130 |
| 23               | 160 |
| 26               | 178 |
| 4                | •   |

For line h, the table shows three values of x and their corresponding values of y. Line k is the result of translating line h down t units in the xy-plane. What is the x-intercept of line t?

- A.  $\left(-\frac{26}{3},0\right)$
- B.  $(-\frac{9}{2},0)$
- C.  $\left(-\frac{11}{3},0\right)$
- D.  $(-\frac{17}{6},0)$

#### ID: 69236d08 Answer

Correct Answer: D

Rationale

Choice D is correct. The equation of line h can be written in slope-intercept form y=mx+b, where m is the slope of the line and (0,b) is the y-intercept of the line. It's given that line h contains the points (18,130), (23,160), and (26,178). Therefore, its slope m can be found as  $\frac{160-130}{23-18}$ , or 6. Substituting 6 for m in the equation y=mx+b yields y=6x+b. Substituting 130 for y and 18 for x in this equation yields 130=6(18)+b, or 130=108+b. Subtracting 108 from both sides of this equation yields 22=b. Substituting 22 for b in y=6x+b yields y=6x+22. Since line k is the result of translating line k down k units, an equation of line k is k is k in this equation yields k is equation yields k in this equation yields k is equation for k yields k in the refore, the k-intercept of line k is k-intercept of line k-in the result of translating line k-intercept of line

Choice A is incorrect and may result from conceptual or calculation errors.

Choice B is incorrect and may result from conceptual or calculation errors.

Choice C is incorrect and may result from conceptual or calculation errors.

# Question ID be02f3aa

| Assessment | Test | Domain  | Skill                             | Difficulty |
|------------|------|---------|-----------------------------------|------------|
| PSAT 8/9   | Math | Algebra | Linear equations in two variables | Hard       |

### ID: be02f3aa

What is the slope of the graph of  $y=rac{1}{3}(29x+10)+5x$  in the *xy*-plane?

### ID: be02f3aa Answer

Correct Answer: 14.66, 14.67, 44/3

Rationale

The correct answer is  $\frac{44}{3}$ . A linear equation can be written in the form y=mx+b, where m is the slope of the graph of the equation in the xy-plane and (0,b) is the y-intercept. Distributing the  $\frac{1}{3}$  in the equation  $y=\frac{1}{3}(29x+10)+5x$  yields  $y=\frac{29}{3}x+\frac{10}{3}+5x$ . Combining like terms on the right-hand side of this equation yields  $y=\frac{44}{3}x+\frac{10}{3}$ . This equation is in the form y=mx+b, where  $m=\frac{44}{3}$  and  $b=\frac{10}{3}$ . Therefore, the slope of the graph of the given equation in the xy-plane is  $\frac{44}{3}$ . Note that 44/3, 14.66, and 14.67 are examples of ways to enter a correct answer.

# Question ID ce9dbaf3

| Assessment | Test | Domain  | Skill                             | Difficulty |
|------------|------|---------|-----------------------------------|------------|
| PSAT 8/9   | Math | Algebra | Linear equations in two variables | Hard       |

### ID: ce9dbaf3

Lily made 36 cups of jam. Lily then filled x small containers and y large containers with all the jam she made. The equation 4x + 6y = 36 represents this situation. Which is the best interpretation of 6y in this context?

- A. The number of large containers Lily filled
- B. The number of small containers Lily filled
- C. The total number of cups of jam in the large containers
- D. The total number of cups of jam in the small containers

#### ID: ce9dbaf3 Answer

Correct Answer: C

Rationale

Choice C is correct. It's given that the equation 4x + 6y = 36 represents the situation where Lily filled x small containers and y large containers with all the jam she made, which was 36 cups. Therefore, 6y represents the total number of cups of jam in the large containers.

Choice A is incorrect. The number of large containers Lily filled is represented by y, not 6y.

Choice B is incorrect. The number of small containers Lily filled is represented by x, not 6y.

Choice D is incorrect. The total number of cups of jam in the small containers is represented by 4x, not 6y.

# **Question ID cca65a7c**

| Assessment | Test | Domain  | Skill                             | Difficulty |
|------------|------|---------|-----------------------------------|------------|
| PSAT 8/9   | Math | Algebra | Linear equations in two variables | Hard       |

#### ID: cca65a7c

A neighborhood consists of a 2-hectare park and a 35-hectare residential area. The total number of trees in the neighborhood is 3,934. The equation 2x + 35y = 3,934 represents this situation. Which of the following is the best interpretation of x in this context?

- A. The average number of trees per hectare in the park
- B. The average number of trees per hectare in the residential area
- C. The total number of trees in the park
- D. The total number of trees in the residential area

#### ID: cca65a7c Answer

Correct Answer: A

Rationale

Choice A is correct. It's given that a neighborhood consists of a 2-hectare park and a 35-hectare residential area and that the total number of trees in the neighborhood is 3,934. It's also given that the equation 2x + 35y = 3,934 represents this situation. Since the total number of trees for a given area can be determined by taking the number of hectares times the average number of trees per hectare, this must mean that the terms 2x and 35y correspond to the number of trees in the park and in the residential area, respectively. Since 2x corresponds to the number of trees in the park, and 2 is the size of the park, in hectares, x must represent the average number of trees per hectare in the park.

Choice B is incorrect and may result from conceptual errors.

Choice C is incorrect and may result from conceptual errors.

Choice D is incorrect and may result from conceptual errors.

# Question ID e76256e7

| Assessment | Test | Domain  | Skill                             | Difficulty |
|------------|------|---------|-----------------------------------|------------|
| PSAT 8/9   | Math | Algebra | Linear equations in two variables | Hard       |

### ID: e76256e7

What is the *y*-coordinate of the *y*-intercept of the graph of  $\frac{3x}{7} = -\frac{5y}{9} + 21$  in the *xy*-plane?

### ID: e76256e7 Answer

Correct Answer: 189/5, 37.8

Rationale

The correct answer is  $\frac{189}{5}$ . A *y*-intercept of a graph in the *xy*-plane is a point where the graph intersects the *y*-axis, which is a point with an *x*-coordinate of 0. Substituting 0 for x in the given equation yields  $\frac{3(0)}{7} = -\frac{5y}{9} + 21$ , or  $0 = -\frac{5y}{9} + 21$ . Subtracting 21 from both sides of this equation yields  $-21 = -\frac{5y}{9}$ . Multiplying both sides of this equation by -9 yields 189 = 5y. Dividing both sides of this equation by 5 yields  $\frac{189}{5} = y$ . Therefore, the *y*-coordinate of the *y*-intercept of the graph of the given equation in the *xy*-plane is  $\frac{189}{5}$ . Note that 189/5 and 37.8 are examples of ways to enter a correct answer.

# Question ID a1d4d6de

| Assessment | Test | Domain  | Skill                             | Difficulty |
|------------|------|---------|-----------------------------------|------------|
| PSAT 8/9   | Math | Algebra | Linear equations in two variables | Hard       |

### ID: a1d4d6de

$$2x + y = 37$$

In triangle QRS, sides QR and RS each have a length of x centimeters and side SQ has a length of y centimeters. The given equation represents this situation. Which of the following is the best interpretation of 37 in this context?

- A. The difference, in centimeters, between the lengths of sides  ${\it QR}$  and  ${\it SQ}$
- B. The difference, in centimeters, between the lengths of sides  ${\it QR}$  and  ${\it RS}$
- C. The sum of the lengths, in centimeters, of the three sides of the triangle
- D. The length, in centimeters, of one of the two sides of equal length

### ID: a1d4d6de Answer

Correct Answer: C

Rationale

Choice C is correct. It's given that in triangle QRS, sides QR and RS each have a length of x centimeters. Therefore, the expression 2x represents the sum of the lengths, in centimeters, of sides QR and RS. It's also given that side SQ has a length of y centimeters. Therefore, the expression 2x + y represents the sum of the lengths, in centimeters, of sides QR, RS, and SQ. Since 2x + y is the sum of the lengths, in centimeters, of the three sides of the triangle and 2x + y = 37, it follows that 37 is the sum of the lengths, in centimeters, of the three sides of the triangle.

Choice A is incorrect. The difference, in centimeters, between the lengths of sides QR and SQ is x-y, not 37.

Choice B is incorrect. The difference, in centimeters, between the lengths of sides QR and RS is x-x, or 0, not 37.

Choice D is incorrect. The length, in centimeters, of one of the two sides of equal length is x, not 37.

# Question ID a9ee9cb4

| Assessment | Test | Domain  | Skill                             | Difficulty |
|------------|------|---------|-----------------------------------|------------|
| PSAT 8/9   | Math | Algebra | Linear equations in two variables | Hard       |

### ID: a9ee9cb4

| $\boldsymbol{x}$ | 1  | 2  | 3  |
|------------------|----|----|----|
| y                | 11 | 16 | 21 |

The table shows three values of x and their corresponding values of y. Which equation represents the linear relationship between x and y?

A. y = 5x + 6

B. y = 5x + 11

C. y = 6x + 5

D. y = 6x + 11

#### ID: a9ee9cb4 Answer

Correct Answer: A

Rationale

Choice A is correct. The linear relationship between x and y can be represented by the equation y=mx+b, where m is the slope of the line in the xy-plane that represents the relationship, and b is the y-coordinate of the y-intercept. The slope can be computed using any two points on the line. The slope of a line between any two points,  $(x_1,y_1)$  and  $(x_2,y_2)$ , on the line can be calculated using the slope formula,  $m=\frac{y_2-y_1}{x_2-x_1}$ . In the given table, each value of x and its corresponding value of y can be represented by a point (x,y). In the given table, when the value of x is 1, the corresponding value of y is 11 and when the value of x is 2, the corresponding value of y is 16. Therefore, the points (1,11) and (2,16) are on the line. Substituting (1,11) and (2,16) for  $(x_1,y_1)$  and  $(x_2,y_2)$ , respectively, in the slope formula yields  $m=\frac{16-11}{2-1}$ , or m=5. Substituting x=5 for x=5 in the equation x=5 in the table, x=5 in the table, x=5 in the table of x=5 in the equation yields x=5 in the equation x=5 in the equation x=5 in the equation x=5 in the equation yields x=5 in the equation x=5 in the equati

Choice B is incorrect. For this relationship, when the value of x is 1, the corresponding value of y is 16, not 11.

Choice C is incorrect. For this relationship, when the value of x is 2, the corresponding value of y is 17, not 16.

Choice D is incorrect. For this relationship, when the value of x is 1, the corresponding value of y is 17, not 11.

# Question ID 136884df

| Assessment | Test | Domain  | Skill                             | Difficulty |
|------------|------|---------|-----------------------------------|------------|
| PSAT 8/9   | Math | Algebra | Linear equations in two variables | Hard       |

## ID: 136884df

Line p is defined by 4y + 8x = 6. Line r is perpendicular to line p in the xy-plane. What is the slope of line r?

### ID: 136884df Answer

Correct Answer: .5, 1/2

Rationale

The correct answer is  $\frac{1}{2}$ . For an equation in slope-intercept form y=mx+b, m represents the slope of the line in the xy-plane defined by this equation. It's given that line p is defined by 4y+8x=6. Subtracting 8x from both sides of this equation yields 4y=-8x+6. Dividing both sides of this equation by 4 yields  $y=-\frac{8}{4}x+\frac{6}{4}$ , or  $y=-2x+\frac{3}{2}$ . Thus, the slope of line p is -2. If line r is perpendicular to line p, then the slope of line p is the negative reciprocal of the slope of line p. The negative reciprocal of -2 is  $-\frac{1}{(-2)}=\frac{1}{2}$ . Note that 1/2 and .5 are examples of ways to enter a correct answer.

# Question ID e3e3fe7e

| Assessment | Test | Domain  | Skill                             | Difficulty |
|------------|------|---------|-----------------------------------|------------|
| PSAT 8/9   | Math | Algebra | Linear equations in two variables | Hard       |

#### ID: e3e3fe7e

Figure A and figure B are both regular polygons. The sum of the perimeter of figure A and the perimeter of figure B is 63 inches. The equation 3x + 6y = 63 represents this situation, where x is the number of sides of figure A and y is the number of sides of figure B. Which statement is the best interpretation of 6 in this context?

- A. Each side of figure B has a length of 6 inches.
- B. The number of sides of figure B is **6**.
- C. Each side of figure A has a length of 6 inches.
- D. The number of sides of figure A is 6.

#### ID: e3e3fe7e Answer

Correct Answer: A

Rationale

Choice A is correct. It's given that figure A and figure B (not shown) are both regular polygons and the sum of the perimeters of the two figures is 63 inches. It's also given that x is the number of sides of figure A and y is the number of sides of figure B, and that the equation 3x + 6y = 63 represents this situation. Thus, 3x and 6y represent the perimeters, in inches, of figure A and figure B, respectively. Since 6y represents the perimeter, in inches, of figure B and y is the number of sides of figure B, it follows that each side of figure B has a length of 6 inches.

Choice B is incorrect. The number of sides of figure B is y, not 6.

Choice C is incorrect. Since the perimeter, in inches, of figure A is represented by 3x, each side of figure A has a length of 3 inches, not 6 inches.

Choice D is incorrect. The number of sides of figure A is x, not 6.

# Question ID f1350f37

| Assessment | Test | Domain  | Skill                             | Difficulty |
|------------|------|---------|-----------------------------------|------------|
| PSAT 8/9   | Math | Algebra | Linear equations in two variables | Hard       |

### ID: f1350f37

In the *xy*-plane, line s passes through the point (0,0) and is parallel to the line represented by the equation y=18x+2. If line s also passes through the point (4,d), what is the value of d?

- A. 2
- B. 18
- C. 72
- D. **74**

#### ID: f1350f37 Answer

Correct Answer: C

Rationale

Choice C is correct. A line in the xy-plane can be represented by an equation of the form y=mx+b, where m is the slope and b is the y-coordinate of the y-intercept of the line. It's given that line a passes through the point a0. Therefore, the a1-coordinate of the a2-intercept of line a3 is a3. It's also given that line a4 is parallel to the line represented by the equation a4 is a5. Since parallel lines have the same slope, it follows that the slope of line a6 is a7. Therefore, line a7 can be represented by the equation a7 in a8 in a9 in a9 yields the equation a9 in a9 yields the equation a9 in a9 yields the equation a9 in this equation a9 in this equation yields a9 in thi

Choice A is incorrect. This is the y-coordinate of the y-intercept of the line represented by the equation y = 18x + 2.

Choice B is incorrect. This is the slope of the line represented by the equation y = 18x + 2.

Choice D is incorrect. The line represented by the equation y = 18x + 2, not line s, passes through the point (4,74).

# **Question ID 8ec3cae8**

| Assessment | Test | Domain  | Skill                             | Difficulty |
|------------|------|---------|-----------------------------------|------------|
| PSAT 8/9   | Math | Algebra | Linear equations in two variables | Hard       |

## ID: 8ec3cae8

Line k is defined by  $y=7x+\frac{1}{8}$ . Line j is perpendicular to line k in the xy-plane. What is the slope of line j?

- A. -8
- B.  $-\frac{1}{7}$
- C. 1/8
- D. **7**

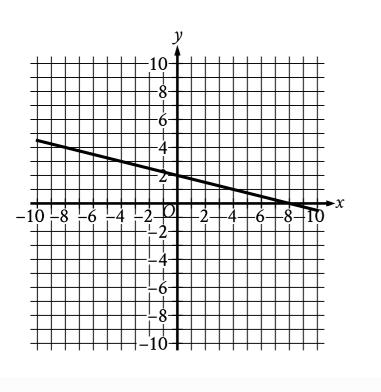
## ID: 8ec3cae8 Answer

Correct Answer: B

Rationale

Choice B is correct. It's given that line k is defined by  $y=7x+\frac{1}{8}$ . For an equation in slope-intercept form y=mx+b, m represents the slope of the line defined by this equation in the xy-plane and b represents the y-coordinate of the y-intercept of this line. Therefore, the slope of line k is k. It's also given that line k is perpendicular to line k in the k-plane. Therefore, the slope of line k is the opposite reciprocal of the slope of line k. The opposite reciprocal of k is k-k-plane. Therefore, the slope of line k-k-plane.

Choice A is incorrect. This is the opposite reciprocal of the y-coordinate of the y-intercept, not the slope, of line k.


Choice C is incorrect. This is the y-coordinate of the y-intercept of line k, not the slope of line j.

Choice D is incorrect. This is the slope of a line that is parallel, not perpendicular, to line k.

# Question ID d999ef02

| Assessment | Test | Domain  | Skill                             | Difficulty |
|------------|------|---------|-----------------------------------|------------|
| PSAT 8/9   | Math | Algebra | Linear equations in two variables | Hard       |

### ID: d999ef02



The graph of y=f(x)+14 is shown. Which equation defines function f?

A. 
$$f(x)=-rac{1}{4}x-12$$

B. 
$$f(x)=-rac{1}{4}x+16$$

C. 
$$f(x) = -\frac{1}{4}x + 2$$

D. 
$$f(x)=-rac{1}{4}x-14$$

### ID: d999ef02 Answer

Correct Answer: A

#### Rationale

Choice A is correct. An equation for the graph shown can be written in slope-intercept form y=mx+b, where m is the slope of the graph and its y-intercept is (0,b). Since the y-intercept of the graph shown is (0,2), the value of b is a. Since the graph also passes through the point a0, the slope can be calculated as a0, or a0, or a1. Therefore, the value of a1 is a2. Substituting a3 for a4 and a5 for a5 in the equation a5 yields a6 yields a7 yields a8 yields a9 yields yields a9 yields a9 yields yi

Choice B is incorrect and may result from conceptual or calculation errors.

Choice C is incorrect and may result from conceptual or calculation errors.

 $\label{lem:choiceD} \textbf{Choice D} \ \textbf{is incorrect and may result from conceptual or calculation errors.}$ 

# Question ID 567c2bc5

| Assessment | Test | Domain  | Skill                             | Difficulty |
|------------|------|---------|-----------------------------------|------------|
| PSAT 8/9   | Math | Algebra | Linear equations in two variables | Hard       |

#### ID: 567c2bc5

| $\boldsymbol{x}$ | $\boldsymbol{y}$ |
|------------------|------------------|
| -18              | -48              |
| 7                | 52               |

The table shows two values of x and their corresponding values of y. In the xy-plane, the graph of the linear equation representing this relationship passes through the point  $(\frac{1}{7}, a)$ . What is the value of a?

- A.  $-\frac{4}{11}$
- B.  $-\frac{4}{77}$
- C.  $\frac{4}{7}$
- D.  $\frac{172}{7}$

#### ID: 567c2bc5 Answer

Correct Answer: D

Rationale

Choice D is correct. The linear relationship between x and y can be represented by the equation y=mx+b, where m is the slope of the graph of this equation in the xy-plane and b is the y-coordinate of the y-intercept. The slope of a line between any two points  $(x_1,y_1)$  and  $(x_2,y_2)$  on the line can be calculated using the slope formula  $m=\frac{y_2-y_1}{x_2-x_1}$ . Based on the table, the graph contains the points (-18,-48) and (7,52). Substituting (-18,-48) and (7,52) for  $(x_1,y_1)$  and  $(x_2,y_2)$ , respectively, in the slope formula yields  $m=\frac{52-(-48)}{7-(-18)}$ , which is equivalent to  $m=\frac{100}{25}$ , or m=4. Substituting 4 for m, -18 for x, and -48 for y in the equation y=mx+b yields -48=4(-18)+b, or -48=-72+b. Adding 72 to both sides of this equation yields 24=b. Therefore, m=4 and b=24. Substituting 4 for m and m in the equation m in the equation

Choice A is incorrect and may result from conceptual or calculation errors.

Choice B is incorrect and may result from conceptual or calculation errors.

Choice C is incorrect and may result from conceptual or calculation errors.

# Question ID 3409ce40

| Assessment | Test | Domain  | Skill                             | Difficulty |
|------------|------|---------|-----------------------------------|------------|
| PSAT 8/9   | Math | Algebra | Linear equations in two variables | Hard       |

#### ID: 3409ce40

Line r is defined by the equation 4x - 9y = 3. Line s is parallel to line r in the xy-plane. What is the slope of line s?

- A.  $\frac{9}{4}$
- B.  $\frac{4}{9}$
- C. -4
- D. **-9**

## ID: 3409ce40 Answer

Correct Answer: B

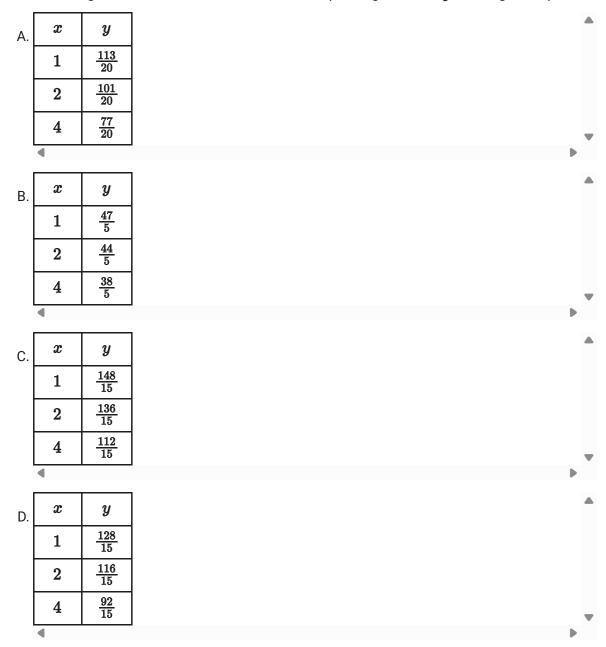
Rationale

Choice B is correct. It's given that line s is parallel to line r in the xy-plane. This means that the slope of line r is equal to the slope of line s. Line r is defined by the equation 4x-9y=3. This equation can be written in slope-intercept form y=mx+b, where m represents the slope of the line and s represents the s-coordinate of the s-intercept of the line. Subtracting s-day from both sides of the equation s-day s-day slope of line s-day slope

Choice A is incorrect. This is the reciprocal of the slope of line s, not the slope of line s.

Choice C is incorrect and may result from conceptual or calculation errors.

Choice D is incorrect and may result from conceptual or calculation errors.


# **Question ID 7dad301b**

| Assessment | Test | Domain  | Skill                             | Difficulty |
|------------|------|---------|-----------------------------------|------------|
| PSAT 8/9   | Math | Algebra | Linear equations in two variables | Hard       |

## ID: 7dad301b

$$\frac{3}{5}x + \frac{3}{4}y = 7$$

Which table gives three values of  $\boldsymbol{x}$  and their corresponding values of  $\boldsymbol{y}$  for the given equation?



### ID: 7dad301b Answer

Correct Answer: D

Rationale

Choice D is correct. Each of the tables gives the same three values of x: 1, 2, and 4. Substituting 1 for x in the given equation yields  $\left(\frac{3}{5}\right)(1)+\frac{3}{4}y=7$ , or  $\frac{3}{5}+\frac{3}{4}y=\frac{35}{5}$ . Subtracting  $\frac{3}{5}$  from both sides of this equation yields  $\frac{3}{4}y=\frac{32}{5}$ . Multiplying both sides of this equation by  $\frac{4}{3}$  yields  $y=\frac{128}{15}$ . Therefore, when x=1, the corresponding value of y for the

given equation is  $\frac{128}{15}$ . Substituting 2 for x in the given equation yields  $\left(\frac{3}{5}\right)(2) + \frac{3}{4}y = 7$ , or  $\frac{6}{5} + \frac{3}{4}y = \frac{35}{5}$ . Subtracting  $\frac{6}{5}$  from both sides of this equation yields  $\frac{3}{4}y = \frac{29}{5}$ . Multiplying both sides of this equation by  $\frac{4}{3}$  yields  $y = \frac{116}{15}$ . Therefore, when x = 2, the corresponding value of y for the given equation is  $\frac{116}{15}$ . Substituting 4 for x in the given equation yields  $\left(\frac{3}{5}\right)(4) + \frac{3}{4}y = 7$ , or  $\frac{12}{5} + \frac{3}{4}y = \frac{35}{5}$ . Subtracting  $\frac{12}{5}$  from both sides of this equation yields  $\frac{3}{4}y = \frac{23}{5}$ . Multiplying both sides of this equation by  $\frac{4}{3}$  yields  $y = \frac{92}{15}$ . Therefore, when x = 4, the corresponding value of y for the given equation is  $\frac{92}{15}$ . The table in choice D gives x-values of y and y and their corresponding values of y for the given equation.

Choice A is incorrect. This table gives three values of x and their corresponding values of y for the equation  $\frac{3}{5}x + \frac{3}{4} + y = 7$ .

Choice B is incorrect. This table gives three values of x and their corresponding values of y for the equation  $\frac{3}{5}x+y=10$ .

Choice C is incorrect. This table gives three values of x and their corresponding values of y for the equation  $\frac{3}{5}x + \frac{3}{4}y = 8$ .

# Question ID 9b8cc94d

| Assessment | Test | Domain  | Skill                             | Difficulty |
|------------|------|---------|-----------------------------------|------------|
| PSAT 8/9   | Math | Algebra | Linear equations in two variables | Hard       |

## ID: 9b8cc94d

Line k is defined by  $y=-\frac{17}{3}x+5$ . Line j is perpendicular to line k in the xy-plane. What is the slope of line j?

### ID: 9b8cc94d Answer

Correct Answer: .1764, .1765, 3/17

Rationale

The correct answer is  $\frac{3}{17}$ . It's given that line j is perpendicular to line k in the xy-plane. This means that the slope of line j is the negative reciprocal of the slope of line k. The equation of line k,  $y=-\frac{17}{3}x+5$ , is written in slope-intercept form y=mx+b, where m is the slope of the line and j is the j-coordinate of the j-intercept of the line. It follows that the slope of line j is j-1. The negative reciprocal of a number is j-1 divided by the number. Therefore, the negative reciprocal of j-1. Thus, the slope of line j-1. Note that j-1. Note that j-1. Note that j-1. Note and j-1. Thus, the slope of ways to enter a correct answer.

# Question ID 4986ad22

| Assessment | Test | Domain  | Skill                             | Difficulty |
|------------|------|---------|-----------------------------------|------------|
| PSAT 8/9   | Math | Algebra | Linear equations in two variables | Hard       |

#### ID: 4986ad22

A batch of banana milkshakes consists of **4** cups of ice cream and **2** bananas and has **1,114 milligrams** (mg) of calcium. There is **276 mg** of calcium in **1** cup of the ice cream used to make this batch of milkshakes. How much calcium, **in mg**, is in **1** banana?

- A. **5**
- B. 10
- C. 419
- D. 1,104

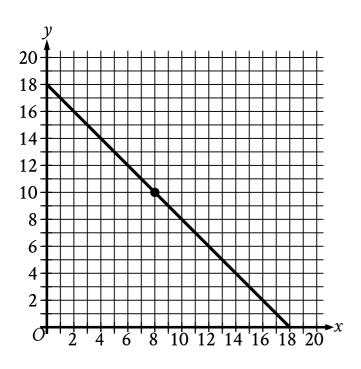
#### ID: 4986ad22 Answer

Correct Answer: A

Rationale

Choice A is correct. It's given that a batch of banana milkshakes consists of 4 cups of ice cream and 2 bananas and has 1,114 mg of calcium. It's also given that there is 276 mg of calcium in 1 cup of the ice cream used to make this batch of milkshakes. It follows that the total amount of calcium in 4 cups of ice cream is 4(276), or 1,104 mg. Let x represent the amount of calcium, in mg, in 1 banana. It follows that the total amount of calcium in 2 bananas is 2x mg. Since the batch of banana milkshakes has 1,114 mg of calcium, the equation 1,104+2x=1,114 represents this situation. Subtracting 1,104 from both sides of this equation yields 2x=10. Dividing both sides of this equation by 2 yields x=5. Therefore, the amount of calcium in 1 banana is 5 mg.

Choice B is incorrect. This is the amount of calcium, in mg, in  ${\bf 2}$  bananas, not in  ${\bf 1}$  banana.


Choice C is incorrect and may result from conceptual or calculation errors.

Choice D is incorrect. This is the amount of calcium, in mg, in  $m{4}$  cups of ice cream, not in  $m{1}$  banana.

# Question ID e0a8b133

| Assessment | Test | Domain  | Skill                             | Difficulty |
|------------|------|---------|-----------------------------------|------------|
| PSAT 8/9   | Math | Algebra | Linear equations in two variables | Hard       |

### ID: e0a8b133



The graph in the *xy*-plane models the possible combinations of length x, in meters (m), and width y, in meters, for a rectangle with a perimeter of 36 m. Which statement is the best interpretation of the point (8, 10) in this context?

- A. The length is 10 m less than the perimeter, and the width is 8 m less than the perimeter.
- B. The length is 10 m, and the width is 8 m.
- C. The length is 8 m, and the width is 10 m.
- D. The length is 8 m less than the perimeter, and the width is 10 m less than the perimeter.

### ID: e0a8b133 Answer

Correct Answer: C

Rationale

Choice C is correct. It's given that the graph in the xy-plane models the possible combinations of length x, in meters (m), and width y, in meters, for a rectangle with a perimeter of 36 m. Since x represents the length, in meters, and y represents the width, in meters, the point (8,10) in the xy-plane represents a rectangle whose length is 8 m and whose width is 10 m.

Choice A is incorrect and may result from conceptual errors.

Choice B is incorrect. This is an interpretation of the point (10, 8), not (8, 10).

Choice D is incorrect and may result from conceptual errors.



# Question ID 21ded0ba

| Assessment | Test | Domain  | Skill                             | Difficulty |
|------------|------|---------|-----------------------------------|------------|
| PSAT 8/9   | Math | Algebra | Linear equations in two variables | Hard       |

### ID: 21ded0ba

Keenan made 32 cups of vegetable broth. Keenan then filled x small jars and y large jars with all the vegetable broth he made. The equation 3x + 5y = 32 represents this situation. Which is the best interpretation of 5y in this context?

- A. The number of large jars Keenan filled
- B. The number of small jars Keenan filled
- C. The total number of cups of vegetable broth in the large jars
- D. The total number of cups of vegetable broth in the small jars

#### ID: 21ded0ba Answer

Correct Answer: C

Rationale

Choice C is correct. It's given that the equation 3x + 5y = 32 represents the situation where Keenan filled x small jars and y large jars with all the vegetable broth he made, which was 32 cups. Therefore, 3x represents the total number of cups of vegetable broth in the small jars and 5y represents the total number of cups of vegetable broth in the large jars.

Choice A is incorrect. The number of large jars Keenan filled is represented by y, not 5y.

Choice B is incorrect. The number of small jars Keenan filled is represented by x, not 5y.

Choice D is incorrect. The total number of cups of vegetable broth in the small jars is represented by 3x, not 5y.

# **Question ID 46782383**

| Assessment | Test | Domain  | Skill                             | Difficulty |
|------------|------|---------|-----------------------------------|------------|
| PSAT 8/9   | Math | Algebra | Linear equations in two variables | Hard       |

#### ID: 46782383

At a state fair, attendees can win tokens that are worth a different number of points depending on the shape. One attendee won S square tokens and C circle tokens worth a total of 1,120 points. The equation 80S + 90C = 1,120 represents this situation. How many more points is a circle token worth than a square token?

- A. 950
- B. 90
- C. 80
- D. 10

#### ID: 46782383 Answer

Correct Answer: D

Rationale

Choice D is correct. It's given that the equation 80S + 90C = 1,120 represents this situation, where S is the number of square tokens won, C is the number of circle tokens won, and 1,120 is the total number of points the tokens are worth. It follows that 80S represents the total number of points the square tokens are worth. Therefore, each square token is worth 80 points. It also follows that 90C represents the total number of points the circle tokens are worth. Therefore, each circle token is worth 90 points. Since a circle token is worth 90 points and a square token is worth 90 points, then a circle token is worth 90, or 90, or 90, more points than a square token.

Choice A is incorrect and may result from conceptual or calculation errors.

Choice B is incorrect. This is the number of points a circle token is worth.

Choice C is incorrect. This is the number of points a square token is worth.

# Question ID d2b63a46

| Assessment | Test | Domain  | Skill                             | Difficulty |
|------------|------|---------|-----------------------------------|------------|
| PSAT 8/9   | Math | Algebra | Linear equations in two variables | Hard       |

#### ID: d2b63a46

| $\boldsymbol{x}$ | $oldsymbol{y}$ |
|------------------|----------------|
| -6               | 65             |
| -3               | 56             |
| 3                | 38             |
| 6                | 29             |

The table shows four values of x and their corresponding values of y. There is a linear relationship between x and y. Which of the following equations represents this relationship?

A. 9x + 3y = 141

B. 9x + 3y = 3

C. 3x + 9y = 141

D. 3x + 9y = 3

### ID: d2b63a46 Answer

Correct Answer: A

#### Rationale

Choice A is correct. An equation representing the linear relationship between x and y can be written in slope-intercept form y=mx+b, where m is the slope of the graph of the equation in the xy-plane and (0,b) is the y-intercept. The slope, m, can be calculated using two ordered pairs,  $(x_1,y_1)$  and  $(x_2,y_2)$ , and the formula  $m=\frac{y_2-y_1}{x_2-x_1}$ . Substituting the ordered pairs (-6,65) and (6,29) from the table for  $(x_1,y_1)$  and  $(x_2,y_2)$ , respectively, in this formula yields  $m=\frac{29-65}{6-(-6)}$ , which is equivalent to  $m=\frac{-36}{12}$ , or m=-3. Substituting -3 for m in the formula y=mx+b yields y=-3x+b. Substituting the point (-6,65) into this equation yields 65=-3(-6)+b, or 65=18+b. Subtracting 18 from both sides of this equation yields 47=b. Substituting 47 for b in the equation y=-3x+b yields y=-3x+47. Adding 3x to both sides of this equation yields 3x+y=47. Multiplying both sides of this equation by 3 yields 3x+3y=141.

Choice B is incorrect. Substituting the point (-6,65) from the table into this equation yields 9(-6) + 3(65) = 3, or 141 = 3, which is false.

Choice C is incorrect. Substituting the point (-6,65) from the table into this equation yields 3(-6) + 9(65) = 141, or 567 = 141, which is false.

Choice D is incorrect. Substituting the point (-6,65) from the table into this equation yields 3(-6) + 9(65) = 3, or 567 = 3, which is false.



# Question ID 60a9d5ac

| Assessment | Test | Domain  | Skill                             | Difficulty |
|------------|------|---------|-----------------------------------|------------|
| PSAT 8/9   | Math | Algebra | Linear equations in two variables | Hard       |

### ID: 60a9d5ac

In the xy-plane, line p has a slope of  $-\frac{5}{3}$  and an x-intercept of (-6,0). What is the y-coordinate of the y-intercept of line p?

### ID: 60a9d5ac Answer

Correct Answer: -10

Rationale

The correct answer is -10. A line in the xy-plane can be represented by the equation y=mx+b, where m is the slope of the line and b is the y-coordinate of the y-intercept. It's given that line p has a slope of  $-\frac{5}{3}$ . Therefore,  $m=-\frac{5}{3}$ . It's also given that line p has an x-intercept of (-6,0). Therefore, when x=-6, y=0. Substituting  $-\frac{5}{3}$  for m, -6 for x, and 0 for y in the equation y=mx+b yields  $0=\left(-\frac{5}{3}\right)(-6)+b$ , which is equivalent to 0=10+b. Subtracting 10 from both sides of this equation yields -10=b. Therefore, the y-coordinate of the y-intercept of line p is -10.

# Question ID 48296c1e

| Assessment | Test | Domain  | Skill                             | Difficulty |
|------------|------|---------|-----------------------------------|------------|
| PSAT 8/9   | Math | Algebra | Linear equations in two variables | Hard       |

### ID: 48296c1e

$$2.5b + 5r = 80$$

The given equation describes the relationship between the number of birds, b, and the number of reptiles, r, that can be cared for at a pet care business on a given day. If the business cares for 16 reptiles on a given day, how many birds can it care for on this day?

- A. **0**
- B. **5**
- C. 40
- D. 80

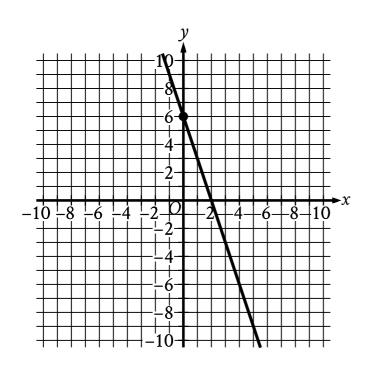
#### ID: 48296c1e Answer

Correct Answer: A

Rationale

Choice A is correct. The number of birds can be found by calculating the value of b when r=16 in the given equation. Substituting 16 for r in the given equation yields 2.5b+5(16)=80, or 2.5b+80=80. Subtracting 80 from both sides of this equation yields 2.5b=0. Dividing both sides of this equation by 2.5 yields b=0. Therefore, if the business cares for 16 reptiles on a given day, it can care for 0 birds on this day.

Choice B is incorrect and may result from conceptual or calculation errors.


Choice C is incorrect and may result from conceptual or calculation errors.

Choice D is incorrect and may result from conceptual or calculation errors.

# Question ID 42d720b2

| Assessment | Test | Domain  | Skill                             | Difficulty |
|------------|------|---------|-----------------------------------|------------|
| PSAT 8/9   | Math | Algebra | Linear equations in two variables | Hard       |

### ID: 42d720b2



The graph shows a linear relationship between x and y. Which equation represents this relationship, where R is a positive constant?

A. 
$$Rx+18y=36$$

B. 
$$Rx - 18y = -36$$

C. 
$$18x + Ry = 36$$

D. 
$$18x - Ry = -36$$

### ID: 42d720b2 Answer

Correct Answer: C

Rationale

Choice C is correct. The equation representing the linear relationship shown can be written in slope-intercept form y=mx+b, where m is the slope and (0,b) is the y-intercept of the line. The line shown passes through the points (0,6) and (2,0). Given two points on a line,  $(x_1,y_1)$  and  $(x_2,y_2)$ , the slope of the line can be calculated using the equation  $m=\frac{y_2-y_1}{x_2-x_1}$ . Substituting (0,6) and (2,0) for  $(x_1,y_1)$  and  $(x_2,y_2)$ , respectively, in this equation yields  $m=\frac{0-6}{2-0}$ , which is equivalent to  $m=-\frac{6}{2}$ , or m=-3. Since (0,6) is the y-intercept, it follows that b=6. Substituting -3 for m and 6 for b in the equation y=mx+b yields y=-3x+6. Adding 3x to both sides of this equation yields 3x+y=6. Multiplying this equation by 6 yields 18x+6y=36. It follows that the equation 18x+Ry=36, where R is a positive constant, represents this relationship.

Choice A is incorrect. The graph of this relationship passes through the point (0,2), not (0,6).

Choice B is incorrect. The graph of this relationship passes through the point (0,2), not (0,6).

Choice D is incorrect. The graph of this relationship passes through the point (-2,0), not (2,0).